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Preface

Mathematics develops both due to demands of other sciences and due to
its internal logic. The latter fact explains the attention of mathematicians
to many problems, which are in close connection with basic mathematical
notions, even if these problems have no direct practical applications.

It is well known that the space of constant curvature is one of the basic
geometry notion [208], which induced the wide field for investigations. As a
result there were found numerous connections of constant curvature spaces
with other branches of mathematics, for example, with integrable partial dif-
ferential equations [36, 153, 189]1 and with integrable Hamiltonian systems
[141]. Geodesic flows on compact surfaces of a constant negative curvature
(with the genus � 2) generate many test examples for ergodic theory (see also
[183] and the bibliography therein). The hyperbolic space H3(R) is the space
of velocities in special relativity (see Sect. 7.4.1) and also arises as space-like
sections in some models of general relativity.

Long before the creation of general relativity the founders of the hyper-
bolic geometry, Lobachevsky and Bolyai, made initial attempts to transfer the
Newtonian mechanics onto the hyperbolic space. They proposed the analog
of the Newtonian potential for this space. In 1885, Killing in his important
paper [87] gave a detailed consideration of the one-particle motion in the ana-
log of the Newtonian potential on the three-dimensional sphere S3 and found
analogs of three Kepler laws for this problem. In Liebmann papers [103] and
[105], the Killing results were transferred onto the hyperbolic space H3(R).

Soon after the appearance of quantum mechanics Schrödinger [156], Infeld,
and Schild [73] considered the corresponding quantum-mechanical one-body
problems for the Newtonian (Coulomb) potentials in spaces S3 and H3(R)
and found corresponding energy levels.

However, these results did not become widely known and at the end of the
20th century were rediscovered many times by some authors. Even the recent
book on classical one-body problem in spaces S3 and H3(R) [204] ignores the
results of Killing and Liebmann, erroneously ascribing them to papers [37] and
[93] published at the end of 20th century. Section 6.4 of present book gives

1 The author also made his modest contribution in this subject [167].



VI Preface

the detailed description of the history of the one-body problem in spaces of
constant curvature and thus fills the existing gap in the modern literature.

The two-body problem with central interaction in constant curvature
spaces was considered firstly by the author: the classical one in [160] and the
quantum mechanical one in [162]. In Euclidean space this problem is reduced
to the one-body problem in a central potential after separating the center of
mass motion. Due to the absence of Galilei transformations the situation for
the constant curvature spaces is different [160]. The two-body problem is in-
variant with respect to the isometry group, but for non-Euclidean space this
group is not wide enough to imply the integrability of this problem in any
sense.

The natural problem of finding central potentials corresponding to inte-
grable two-body problems is far from its solution now. At the first glance it
seems a bit strange due to the diversity of methods in the theory of integrable
dynamical systems, but a more closer look at these methods shows that they
are not adapted for systems under consideration.

Indeed, some methods are aimed at an artificial construction of new inte-
grable systems; other methods explain from new points of view the integra-
bility of old integrable systems. For studying the integrability of a concrete
dynamical system one can use only “old” methods: the numerical construction
of Poincaré surface of section, the Painlevé test, and lucky guesses, concerning
the form of additional integrals if they exist. However, in our situation the
latter methods encounter great difficulties.

The numerical construction of Poincaré surfaces of section for the clas-
sical two-body system is possible only for concrete potentials of interaction.
Therefore, one could not find a potential, corresponding to integrable case
without a lucky guess (see also the discussion in Sect. 7.3.2). The Painlevé
test (see for example [191]) practically is suitable only for differential equa-
tions having a polynomial form. It is not valid for the two-body problem in
spaces of constant curvature. Lucky guesses, if appear, do it usually at once
and only in relatively simple situations. In another case one should wait for
the elaboration of a refined technique aimed at a concrete subject.2

Clearly, all reasons above, concerning the integrability of the two-body
problem on constant curvature spaces, are purely heuristic and do not ex-
haust this problem. Note in this connection the negative results concerning
the nonintegrability of the restricted [112, 213, 214] and nonrestricted [171]
two-body problem in spaces of constant curvature for Newton and oscillator
potentials.

The natural spaces for the two-body problem are two-point homogeneous
Riemannian spaces, because a distance between bodies in these spaces is the
only invariant of their location with respect to the isometry group. Simply
connected spaces of a constant curvature and real projective spaces are par-
ticular cases of two-point homogeneous Riemannian spaces.3 The two-body
system in these spaces has the radial degree of freedom and degrees being
described through the isometry group.
2 Recall for example the history of the Fermat last theorem [147].
3 Below by a two-point homogeneous space we shall mean any space of this kind

except Euclidean one.
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However, the problem of finding an explicitly invariant form of the two-
body Hamiltonian on two-point homogeneous spaces turned out to be a dif-
ficult problem, which was solved by stages in author’s papers [166, 160, 162,
163]. At last, a general formula of the two-body Hamiltonian valid for all
two-point homogeneous spaces was found in [169] on the base of a special
expansion of a Lie algebra g, corresponding to the isometry group G, into a
direct sum of subspaces.

This approach uses the Helgason theory of invariant differential operators
[66, 67]. In the quantum mechanical case it leads to the representation of the
two-body Hamiltonian H through a radial differential operator and genera-
tors of the algebra DiffI(QS) of invariant differential operators on the unit
sphere bundle QS over a two-point homogeneous space Q. These generators
are polynomial with respect to a base of the algebra g. This representation of
H enables one to find separate spectral differential equations for the two-body
problem on compact two-point homogeneous spaces. For Coulomb and oscil-
lator potentials on spheres Sn some of these equations can be reduced to the
hypergeometric equation and thus be solved in an explicit form. Therefore,
Coulomb and oscillator quantum mechanical two-body problems on Sn are
quasi-exactly solvable [162, 184].

Using the correspondence between classical Hamiltonian functions and
quantum mechanical Hamiltonians, one can derive the explicitly invariant
form of the two-body Hamiltonian function. Generators of the algebra
DiffI(QS) are replaced by generators of the corresponding graded algebra
gr DiffI(QS), which is isomorphic to the Poisson algebra of invariant func-
tions on the cotangent bundle T ∗QS . Using this form of the Hamiltonian
function one can compare different approaches [47, 48, 128, 152, 215] to the
definition of the center of mass for two particles on constant curvature spaces.
This form is also convenient for the Hamiltonian reduction of the two-body
problem and for proving the absence of particles’ collision on infinite time
interval under some additional conditions.

Note that these investigations require various geometrical, algebraic, and
analytical methods. For analyzing general situations we use here the coor-
dinate free language, preferably in terms of corresponding Lie algebras. In-
deed, for curved spaces, especially of a high dimension (for example dimension
n), the existing symmetry is often hidden in cumbersome coordinate expres-
sions. The manipulation with such expressions becomes very laborious and
frequently impossible even with the help of computer algebra systems. On
the other hand, expressions of invariant differential operators through base
elements of a Lie algebra are polynomial with constant coefficients in non-
commutative variables. Manipulations with such polynomials are much easier
than coordinate evaluations.

Some results of the present book are of more general interest and can be
used in other researches. These are the expression of the Laplace–Beltrami op-
erator through a moving frame, particularly through Killing vector fields, the
description of the reduced cotangent bundle over a G-homogeneous space in
terms of orbits of the Ad∗

G-action, and the description of the algebra DiffI(QS)
for a two-point homogeneous space Q through generators and relations.
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Chapters 1–4 describe the geometry results necessary for studying the
two-body problem on two-point homogeneous spaces. The classification of
these spaces are in Chap. 1. There are also models of compact two-point ho-
mogeneous spaces as submanifolds of Euclidean spaces or its factor spaces,
different models of real hyperbolic spaces Hn(R), n � 2, and the description
of the transition from compact to noncompact two-point homogeneous spaces
in terms of corresponding Lie algebras.

Necessary data on differential operators are in the second chapter.
Section 2.1 contains basic notions of the theory of invariant differential oper-
ators on smooth manifolds. The expression of the Laplace–Beltrami operator
is derived in Sect. 2.2. Basic facts on self-adjointness of abstract differential
operators and conditions sufficient for the self-adjointness of Schrödinger op-
erators on Riemannian manifolds are described in Sect. 2.3. The last Sect. 2.4
of Chap. 2 contains the general scheme of the quantum-mechanical reduction.

The third chapter deals with algebras DiffI(QS) of invariant differential
operators on unit sphere bundles QS over two-point homogeneous spaces Q.
There are found the description of these algebras in terms of generators and
relations. All such systems of generators contain one generator D0 of the first
order. Its kernel is studied in Sect. 3.6. Also, there are found some elements
from centers of these algebras.

Chapter 4 contains basic facts concerning Hamiltonian dynamical sys-
tems with symmetry and the correspondence between classical and quantum-
mechanical systems. In particular, the noncommutative integrability and the
momentum map are discussed here. The special symplectomorphism between
a reduced cotangent bundle of a homogeneous manifold and some factor space
of a coadjoint orbit of a corresponding Lie group is constructed in Sect. 4.3.4.

Chapter 5 deals with the problem of finding an explicitly invariant ex-
pression for the two-body Hamiltonian on a two-point homogeneous space Q
through a radial differential operator and generators of the algebra DiffI(QS).

The one-body problem in a central potential is discussed in Chap. 6. In
Sect. 6.1 the noncommutative integrability of the classical one-body problem
on a general two-point homogeneous space is proved, which seems to be a
new result. For spaces of constant curvature there are given more detailed
results both in classical and quantum cases. These results are known, but are
collected together for the first time.

The classical case includes the discussion of the genesis of Bertrand po-
tentials, the description of particle trajectories in these potentials, and their
relations with conics in constant curvature spaces. In the quantum case there
are given explicit formulas for one-particle energy levels and eigenfunctions,
corresponding to Bertrand potentials in these spaces.

Also, in Sect. 6.4 there is a historical survey of one- and two-body mo-
tions in central potentials in spaces of a constant curvature, containing rele-
vant references to many papers from the early beginning of the non-euclidean
geometry till the present time.

The expression for the two-body quantum Hamiltonian from Chap. 5 is
transformed into the two-body Hamiltonian function of the corresponding
classical system in Chap. 7. The problem of searching of nontrivial integrals
of motion for different potentials is discussed in Sect. 7.3. Also, the absence
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of particles’ collision for some potentials and initial conditions is proved.
The found expression for the two-body Hamiltonian function is considered
in Sect. 7.4 with respect to the center-of-mass problem in two-point homoge-
neous spaces. Different existing definitions of the center-of-mass for constant
curvature spaces are discussed. It is shown that all of them have flaws in com-
parison with the center of mass concept in Euclidean space. Reduced classical
two-body systems in spaces Sn and Hn(R) are classified in Sect. 7.5.

Chapter 8 deals with the quantum two-body problem in compact two-point
homogeneous spaces. It is shown that some infinite energy level series can be
found from separate ordinary differential equations of the second order. All
such equations are found for spheres Sn; then they are reduced to the hyper-
geometric equation for Coulomb and oscillator potentials and corresponding
energy levels series are found in explicit form. Thus, the quasi-exactly solvabil-
ity of the two-body problem for Coulomb and oscillator potentials on spheres
is shown. Difficulties of using this approach for noncompact two-point homo-
geneous spaces are discussed.

There are also four appendices in the book. The first one demonstrates
the technique of calculating commutative relations for generators of differen-
tial operator algebras from Chap. 3. The second appendix contains basic facts
on Fuchsian differential equations, especially on Riemann, hypergeometric,
and Heun ones. In the third appendix there are some facts concerning orthog-
onal complex Lie algebras and their representations. Some unsolved problems
arising from the book content are listed in the last appendix.

Prerequisites from differential geometry can be found in [17, 32, 34, 56, 63,
64, 92, 143, 208]; from modern theory of Hamiltonian systems in [8, 32, 58,
114, 116, 181, 193]; from the theory of Lie groups and their actions on smooth
manifolds in [2, 3, 13, 31, 65, 66, 88, 134, 142, 158, 199]; from representation
theory [53, 60, 135, 212]; from functional analysis in [44, 85, 144]; and many
other sources.

If one is interested in a brief introduction into the one-body problem on
constant curvature spaces he or she can read Sects. 1.3.3 and 6.2 for the clas-
sical case and Sects. 1.3.3, 2.3 and 6.3 for the quantum one.

The author tried to make the bibliography as complete as possible only
in respect of papers, concerning one- and two-body mechanics on two-point
homogeneous spaces, particularly on spaces of constant curvature, except of
geodesic flows. A survey on the latter subject can be found in [25].

The author expresses his deep gratitude to A. Starinets and I. Stepanova,
whose help in duration of several years made easier his access to scientific
publications and understanding papers in German. He thanks A. Molev for
some advices concerning representative theory, A. Sergyeyev for some useful
references, P. Golubtsov for a TEXnical help, and all people who sent him
their papers, cited in the book. The author is also grateful to the series editor
Prof. W. Beiglböck for some critical remarks and proposals for improving the
text. Any remarks and comments will be appreciated.

Moscow Alexey V. Shchepetilov
February 2006
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Glossary

Sets

N is the set of natural numbers
R+ is the set of positive real numbers
(α, . . . , ω) denotes a set of objects α, . . . , ω
pt denotes a one point set

Spaces

L2(M,dν) is the Hilbert space of complex-valued functions on M ,
square integrable w.r.t. a measure ν

L2
loc(M,dν) is the set of complex-valued functions on M , locally

square integrable w.r.t. a measure ν

W k,l
loc (M

n, dµ) 374

Q denotes a two-point homogeneous Riemannian space,
different from Euclidean one

MS denotes the unit sphere bundle over a Riemannian
space M

M/G denotes a factor space of a space M with respect to
an action of a group G on it

span(e1, . . . , en) denotes the linear span of elements e1, . . . , en from some
linear space
for a linear space L the space L∗ is dual to L
for a subspace L′ of a linear space L the subspace
ann L′ ⊂ L∗ is the annihilator of L′,
i.e., annL′ := (α ∈ L∗| α(L′) = 0)

Algebras and Groups

R is the field of real numbers
C is the field of complex numbers
H is the algebra of quaternions

4 A number after notation refers to a page, where this notation is described.
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Ca is the algebra of octonions (the Cayley algebra)
C∞(M) is the algebra of smooth real-valued functions on a

smooth manifold M
C∞

c (M) is the subalgebra of C∞(M), consisting of functions
with a compact support

C∞(M, C) is the algebra of smooth complex-valued functions on M
C∞

c (M, C) is the subalgebra of C∞(M, C), consisting of functions
with a compact support

P(T ∗M) is the algebra of smooth real-valued functions on a
cotangent bundle T ∗M , polynomial on fibers

X (M) is the infinite-dimensional Lie algebra of smooth vector
fields on M ; also X (M) is a module over C∞(M)

U(g) is the universal enveloping algebra for a Lie algebra g

LDiff(G), RDiff(G), are respectively algebras of left-, right- and biinvariant
LRDiff(G) differential operators on a Lie group G
DiffG(M) is the algebra of G-invariant differential operators on a

G-homogeneous space M
LDiffK(G) is the algebra of G left-invariant and K right-invariant

differential operators on G, where K is a subgroup of G
O(1, n), O0(1, n) 13
WF (x) 75
Sp(g) 76

Operations

◦ denotes the Jordan multiplication in the algebra h3(Ca); in
other cases it denotes the composition of two operations

£ξT is the Lie derivative of a tensor field T along a vector field ξ
∇ is the Levi-Civita connection on a Riemannian manifold
grad f is the gradient of a function f on a Riemannian manifold
adX denotes the adjoint action of an element X from a Lie algebra
Adq denotes the adjoint action of an element q from a Lie group
Ad∗

q denotes the coadjoint action of an element q from a Lie group 77
[A,B] denotes the commutator in algebras, in particular the

commutator of vector fields as operators, acting on functions
{A,B} denotes the anticommutator in algebras
[ϕ,ψ]P denotes the Poisson brackets of functions ϕ and ψ on a Poisson

manifold
〈·, ·〉 denotes a scalar (inner) product
im λ is the image of a map λ
λ−1 is the inverse map (generally multivalued) for a map λ
id is the identity map
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πi denotes different projections
π1 is a projection of a group onto its homogeneous space 8, 10,
24, 97,
π2 – 33,
π3 – 54,
π4 – 98,
π̃1, π̃2 – 113,

dπ and π∗ denote the differential of a map π
dπ∗ denotes the codifferential of a map π
⊕ denotes a direct sum of linear spaces, until indicated otherwise
Kilg is the Killing form for a Lie algebra g

Miscellania

i, j,k are quaternion complex units
dimK denotes a dimension of some object over a field K

(z1 : . . . : zn+1) are homogeneous coordinates of a point from a
projective space

Re z, Im z are respectively real and imaginary parts of an
element z ∈ C, H, Ca

A \ B denotes the set subtracting
symb D is the symbol of a differential operator D 104
Sl denotes the group of all permutations of l elements

Until indicated otherwise, all manifolds, linear spaces, algebras, etc. are
supposed to be real; smooth manifolds are supposed to be Hausdorff, para-
compact and second countable.

Lie groups are denoted by capital Latin letters and their Lie algebras by
corresponding small gothic letters. Also, small gothic letters denote linear
subspaces of Lie algebras. Four series of simple classical complex Lie algebras
are denoted as An,Bn,Cn,Dn.

For a linear space V the symbol T (V ) denotes the tensor algebra without
unit. We suppose also that the symmetric algebra S(V ) and the universal
enveloping algebra U(g) for a Lie algebra g do not contain the unit element.

If a Lie group G acts in a linear space V , then its invariant means an
invariant polynomial with arguments from V , i.e., an invariant element from
the symmetric algebra S(V ∗) for the adjoint space V ∗.

A scalar (inner) product in complex and quaternion linear spaces is sup-
posed to be linear w.r.t. the second argument and conjugate linear w.r.t. the
first one. A quaternion space is the right one w.r.t. quaternion multiplication.

A square root for the positive number is positive; for other numbers it is
an arbitrary root.

Throughout the book by a polynomial with noncommutative arguments
we mean an ordered one, i.e., each its monomial is an ordered product.

The standard abbreviations “iff ” and “w.r.t.” mean respectively “if and
only if” and “with respect to”.
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Two-Point Homogeneous Riemannian Spaces

Euclidean space has many nice properties. It is a connected and simply con-
nected topological space, i.e., its topology is simple. It is a Riemann space
and from the point of view of Riemannian geometry it is flat, complete, ho-
mogeneous and isotropic. Moreover, a space with such properties is unique in
every dimension. Therefore, Euclidean space is a suitable and historically the
first area for constructing mechanical models.

If one does not insist on flatness of the physical spaces, but wants to
conserve other nice properties described above (may be except of the property
to be a simply connected space), then the next candidates for the role of a
physical space are so called two-point homogeneous spaces, i.e., spaces in which
any pair of points can be transformed by means of an appropriate isometry to
any other pair of points with the same distance between them. The most well-
known representatives of this class of Riemann spaces are simply connected
spaces of a constant sectional curvature. Their isometry group reaches the
maximal dimension (while fixing the dimension of a space) and they appear
as space-like sections in some general relativity models.

In this chapter we start from the classification of two-point homogeneous
Riemannian spaces, then describe a special expansion of algebras of their local
isometries. Using this expansion and the homogeneity property the explicitly
invariant form of the two-point Hamiltonian in these spaces will be obtain
in the general way in Chap. 5. However, the studying more subtle properties
of these spaces (e.g., algebras of invariant differential operators on the unit
sphere bundles over these spaces) requires their models, which are described
at the end of this chapter.

1.1 Classification

In the following, Q denotes a two-point homogeneous connected Riemannian
space. The classification of these spaces can been found in [192, 206], (see also
[118, 208]) and is as follows (everywhere n ∈ N):

1. Euclidean space En, n � 1;
2. the sphere Sn, n � 1;

A.V. Shchepetilov: Calculus and Mechanics on Two-Point Homogeneous Riemannian Spaces,
Lect. Notes Phys. 707, 1–22 (2006)
DOI 10.1007/3-540-35386-0 1 c© Springer-Verlag Berlin Heidelberg 2006



2 1 Two-Point Homogeneous Riemannian Spaces

3. the real projective space Pn(R), n � 2;
4. the complex projective space Pn(C), n � 2;
5. the quaternion projective space Pn(H), n � 2;
6. the Cayley projective plane P2(Ca);
7. the real hyperbolic space (Lobachevski space) Hn(R), n � 2;
8. the complex hyperbolic space Hn(C), n � 2;
9. the quaternion hyperbolic space Hn(H), n � 2;

10. the Cayley hyperbolic plane H2(Ca).

Note that there are isomorphisms in low dimensions: P1(R) ∼= S1, P1(C) ∼=
S2, P1(H) ∼= S4, P1(Ca) ∼= S8, H1(C) ∼= H2(R), H1(H) ∼= H4(R), H1(Ca) ∼=
H8(R) [56, 66].

There are different equivalent approaches to the classification of these
spaces. Recall that the rank of a symmetric space is the dimension of its
maximal flat completely geodesic submanifold.

Theorem 1.1. Let Q be a connected Riemannian space, G be the identity
component of the isometry group for Q and Kx be a stationary subgroup of G
for a point x ∈ Q. Then the following conditions 1, 2 are equivalent

1. Q is two-point homogeneous;
2. the action of the stationary subgroup Kx on all unit spheres in the tangent

spaces TxQ, ∀x ∈ Q is transitive; in other words, Q is isotropic.

These conditions together mean that the group G acts transitively on the
set of all geodesics. Therefore, if any of these condition is satisfied, then all
geodesics on the compact space Q are closed and have the same length.

Also, if a complete simply connected Riemannian space is a symmetric
space of the rank one, then it is two-point homogeneous.

This result has been proved in [208] (lemma 8.12.1), [192, 206], see also
references in [65] (p. 535). For compact two-point homogeneous Riemannian
spaces (i.e., of types 2-6) the group G is compact and for other two-point
homogeneous Riemannian spaces it is noncompact.

There are also two following results, characterizing some two-point homo-
geneous Riemannian spaces by its sectional curvatures κ.

Theorem 1.2 (M. Berger, [34]). Let M be a complete simply connected
even-dimensional Riemannian manifold, all of whose sectional curvatures κ

obey the inequality
1
4

� κ � 1 (1.1)

and whose diameter is π. Then M is isometric to a Riemannian symmetric
space of rank one, which is also two-point homogeneous due to Theorem 1.1.

Theorem 1.3 ([34]). Let M be a complete simply connected Riemannian
manifold, all of whose sectional curvatures κ obey the inequality (1.1). Then
M is homeomorphic to a sphere or is isometric to a Riemannian symmetric
space of rank one, again two-point homogeneous.
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Useful models for all compact two-point homogeneous Riemannian spaces
and the space Hn(R) are given below. There are known also models for spaces
Hn(C) and Hn(H). The author is not aware if a model for the space H2(Ca)
is known.

Recall that a rank rk g′ of a semisimple Lie algebra g′ (complex or real) is
the dimension of its maximal commutative subalgebra. The rank rk g′ coin-
cides with the minimal codimension of AdG-orbits. Orbits of such codimension
form an open dense subset in g′.

1.2 Special Expansion of the Lie Algebra
of Infinitesimal Isometries for Two-Point
Homogeneous Riemannian Spaces

Let now Q be a compact two-point homogeneous Riemannian space (i.e., a
space of types 2-6), G be the identity component of the isometry group for
Q and g be the Lie algebra of G. We assume that some point x0 ∈ Q is fixed
(the index x0 will sometimes be omitted in the following), K is the stationary
subgroup of G, corresponding to this point, and k ⊂ g is the Lie algebra of
K. All geodesics on Q are closed1 and due to Theorem 1.1 have the same
length equals 2 diam Q, where diam Q is the maximal distance between two
points of the space Q (i.e., diam Q is the diameter of Q). Put R = 2diam Q/π
for the space Pn(R) and R = diam Q/π for the other compact two-point
homogeneous Riemannian spaces. Then the maximal sectional curvature of
all these spaces is R−2 and the minimal sectional curvature of the spaces
Pn(C), Pn(H), P2(Ca) is (2R)−2 [65].

Denote by ρ(x, y) the distance between points x, y ∈ Q and let ργ(x, y)
be the length of a smooth curve γ joining the points x and y. If γ is closed
we denote by ργ(x, y) the distance of the shortest segment of γ joining x
and y. For x ∈ Q the subset Ax ⊂ Q, consisting of all points y for those
ρ(x, y) = diam Q, is called the antipodal manifold for x. For the sphere Sn

the manifold Ax consists of one point, for the space Pn(K) it is isometric to
Pn−1(K), where K = R, C or H. For the space P2(Ca) the manifold Ax is
isometric to S8 [65, 67].

Proposition 1.1. Let γ be a closed geodesic containing the point x0 and a
point x1 ∈ γ such that ργ(x1, x0) = diam Q. Then

1. ργ(x0, x) = ρ(x0, x) for every x ∈ γ, in particular x1 ∈ Ax0 ;
2. if a geodesic γ1 
= γ contains x0 and another point x ∈ γ, then x = x1;
3. if x ∈ γ and 0 < ρ(x0, x) < diam Q, then the subgroup K0 of the group G,

consisting of all isometries conserving x0 and x, conserves also all points
of γ; thus K0 does not depend on a choice of x if 0 < ρ(x0, x) < diam Q.

Proof. Throughout the proof we use the fact that in a complete connected
Riemannian manifold a distance between any two points is realized by some
1 Besides compact two-point homogeneous spaces there are other Riemannian

spaces for which all geodesics are closed [16, 91].



4 1 Two-Point Homogeneous Riemannian Spaces

geodesic and conversely any piecewise smooth curve, realizing this distance,
is a geodesic [92, 208].

Let x2 ∈ Ax0 . Then there is a geodesic γ′ joining x0 with x2 such that
ργ′(x0, x2) = ρ(x0, x2) = diam Q. Due to Theorem 1.1 there is an isometry
q ∈ K, transforming γ′ into γ. Therefore, it holds

diam Q = ρ(x0, x2) = ργ′(x0, x2) = ρ(x0, qx2) = ργ(x0, qx2) .

This means qx2 = x1 and thus ρ(x0, x1) = ργ(x0, x1) = diam Q.
Suppose x ∈ γ and ργ(x0, x) < diam Q, but ρ(x0, x) < ργ(x0, x). Let the

distance between x0 and x is realized by a geodesic γ̃. Then the piecewise
geodesic, consisting of γ̃ and the interval of γ between the points x and x1,
has the length less than diamQ that is impossible. This proves the first claim.

Prove the second claim. The assumption ργ1(x0, x) < ργ(x0, x) contra-
dicts the first claim, already proved. Due to the equivalence of all geodesics
in Q the inverse inequality ργ1(x0, x) > ργ(x0, x) is also impossible. There-
fore ργ1(x0, x) = ργ(x0, x). If x 
= x1, then there is the piecewise geodesic,
consisting of two geodesic segment and joining the points x0 and x1, with the
length diam Q. This implies that ρ(x0, x1) < diam Q, which contradicts the
first claim. Thus, x = x1.

Prove the last claim. If q ∈ K0, then q transforms a segment γ̂ of γ, joining
the points x0 and x, into a geodesic segment, joining the same points. But
due to the second claim there are no such geodesic segments except of γ̂ and
γ\γ̂. Since these segments have different lengths, it holds q(γ̂) = γ̂. Due to
the same reasons it holds q(γ\γ̂) = γ\γ̂ that yields also q(γ) = γ.

Let γK0 be a subset of γ consisting of all K0-fixed point. The continuity
of the K0-action on the space Q implies that γK0 is closed. Any geodesic γ̃
realizes the strong minimum for length of curves between any two points on γ̃,
if they are sufficiently close to each other [92]. Since the group K0 conserves
the geodesic γ, it means that γK0 is an open subset of γ. Thus γK0 = γ that
completes the proof. ��

Since the space Q is symmetric, in the algebra g there exists a complemen-
tary subspace p with respect to the subalgebra k such that [k, p] ⊂ p, [p, p] ⊂ k.
The space p can be naturally identified with the space Tx0Q. Under this iden-
tification the restriction of the Killing form for the algebra g onto the space p

and the scalar product on Tx0Q are proportional. In particular, the decompo-
sition g = p⊕ k is uniquely determined by the point x0. Let 〈·, ·〉 be the scalar
product on the algebra g such that it is proportional to the Killing form and
its restriction onto the subspace p ∼= Tx0Q coincides with the restriction of
the Riemannian metric g on Tx0Q. The inclusions

[p, [k, p]] ⊂ k, [p, [k, k]] ⊂ p

and the definition of the Killing form imply that the spaces p and k are orthog-
onal to each other with respect to the scalar product 〈·, ·〉. From the results
of [65, 111] we can extract the following key proposition.
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Proposition 1.2. The algebra g admits the following expansion into the direct
sum of subspaces:

g = a ⊕ k0 ⊕ kλ ⊕ k2λ ⊕ pλ ⊕ p2λ (1.2)

such that dim a = 1, λ is a nontrivial linear form on the space a, dim kλ =
dim pλ = q1, dim k2λ = dim p2λ = q2, p = a ⊕ pλ ⊕ p2λ, k = k0 ⊕ kλ ⊕ k2λ;
here q1, q2 ∈ {0} ∪N, the subalgebra a is the maximal commutative subalgebra
in the subspace p and it corresponds to the tangent vectors to the geodesic γ̃
at the point x0. All summand in (1.2) are adk0-invariant and the following
inclusions are valid:

[a, pλ] ⊂ kλ, [a, kλ] ⊂ pλ, [a, p2λ] ⊂ k2λ, [a, k2λ] ⊂ p2λ, [a, k0] = 0 ,

[kλ, pλ] ⊂ p2λ ⊕ a, [kλ, kλ] ⊂ k2λ ⊕ k0, [pλ, pλ] ⊂ k2λ ⊕ k0 , (1.3)
[k2λ, k2λ] ⊂ k0, [p2λ, p2λ] ⊂ k0, [k2λ, p2λ] ⊂ a, [kλ, k2λ] ⊂ kλ, [kλ, p2λ] ⊂ pλ,

[pλ, k2λ] ⊂ pλ, [pλ, p2λ] ⊂ kλ .

Moreover, for any basis eλ,i, i = 1, . . . , q1 in the space pλ and any basis
e2λ,i, i = 1, . . . , q2 in the space p2λ there are the basis fλ,i, i = 1, . . . , q1 in
the space kλ and the basis f2λ,i, i = 1, . . . , q2 in the space k2λ such that:

[Z, eλ,i] = −λ(Z)fλ,i, [Z, fλ,i] = λ(Z)eλ,i , i = 1, . . . , q1 , (1.4)
[Z, e2λ,i] = −2λ(Z)f2λ,i, [Z, f2λ,i] = 2λ(Z)e2λ,i , i = 1, . . . , q2,∀Z ∈ a .

If a vector Λ ∈ a satisfies the condition 〈Λ,Λ〉 = R2 , then |λ(Λ)| =
1
2
.

Nonnegative integers q1 and q2 are said to be multiplicities of the space Q.
The triple (q1, q2, R) characterize Q uniquely up to the exchange Sn ↔ Pn(R).
For the spaces Sn and Pn(R) we have q1 = 0, q2 = n − 1; for the space
Pn(C) : q1 = 2n − 2, q2 = 1; for the space Pn(H) : q1 = 4n − 4, q2 = 3;
and for the space P2(Ca) : q1 = 8, q2 = 7. Conversely, for the spaces Sn and
Pn(R) we could reckon that q1 = n− 1, q2 = 0. Our choice corresponds to the
isometries P1(C) ∼= S2 , P1(H) ∼= S4.

Remark 1.1. The space a⊕p2λ generates in the space Q a completely geodesic
submanifold of the constant sectional curvature R−2 and the dimension q2+1.
For spaces Sn,Pn(C),Pn(H),P2(Ca) this submanifold is a sphere. For the
space Pn(R) this submanifold is the whole Pn(R). If q1 
= 0 , the element Λ
and an arbitrary nonzero element from the space pλ generate in Q a completely
geodesic two dimensional submanifolds of the constant curvature (2R)−2.

Let vectors eλ,i, fλ,i, i = 1, . . . , q1 and e2λ,i, f2λ,i, i = 1, . . . , q2 be as in
Proposition 1.2. Choose a vector Λ ∈ a such that λ(Λ) = 1

2 . The following
proposition easily follows from Proposition 1.2.

Proposition 1.3. The spaces a⊕ k0 , kλ ⊕ pλ , k2λ ⊕ p2λ are pairwise orthog-
onal. One has

〈eλ,i, eλ,j〉 = 〈fλ,i, fλ,j〉, 〈eλ,i, fλ,j〉 = −〈fλ,i, eλ,j〉 = 0, i, j = 1, . . . , q1 , (1.5)
〈e2λ,i, e2λ,j〉= 〈f2λ,i, f2λ,j〉, 〈e2λ,i, f2λ,j〉 = −〈f2λ,i, e2λ,j〉 = 0, i, j = 1, . . . , q2 .
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Proof. The AdG-invariance of the metric 〈·, ·〉 implies that the operator
TΛ : X → [Λ, [Λ,X]] is symmetric on the space g. This operator has the
following eigenspaces a⊕ k0, kλ ⊕ pλ, k2λ ⊕ p2λ with eigenvalues 0, −λ2(Λ) =

−1
4
,−4λ2(Λ) = −1 , respectively. Thus, these eigenspaces are orthogonal to

each other. The AdG-invariance of the metric 〈·, ·〉 and the equality (1.4) give

λ(Λ)〈eλ,i, eλ,j〉 = 〈[Λ, fλ,i], eλ,j〉 = −〈fλ,i, [Λ, eλ,j ]〉 = λ(Λ)〈fλ,i, fλ,j〉 .

This proves the first equality from (1.5). The orthogonality p⊥k implies the
second and the forth equalities from (1.5). The third equality is similar to the
first. ��

The Jacobi identity and formulae (1.4) give [Z, [eλ,i, fλ,i]] = 0. Therefore,
the relation [kλ, pλ] ⊂ p2λ⊕a from (1.3) implies [eλ,i, fλ,i] ∈ a. Let [eλ,i, fλ,i] =:
κiΛ. The AdG-invariance of the metric 〈·, ·〉 leads to

0 = 〈Λ, [eλ,i, fλ,i]〉 + 〈[eλ,i,Λ], fλ,i〉 = κi〈Λ,Λ〉 + λ(Λ)〈fλ,i, fλ,i〉 ,

and using the first equality from (1.5) we obtain:

κi = − λ(Λ)
〈Λ,Λ〉 〈fλ,i, fλ,i〉 = − λ(Λ)

〈Λ,Λ〉 〈eλ,i, eλ,i〉 .

Similarly, we get:

[e2λ,i, f2λ,i] = −2λ(Λ)
〈Λ,Λ〉 〈f2λ,i, f2λ,i〉Λ = −2λ(Λ)

〈Λ,Λ〉 〈e2λ,i, e2λ,i〉Λ .

Using the freedom provided by Proposition 1.2, we choose the bases {eλ,i}q1
i=1

in the space pλ and {e2λ,j}q2
j=1 in the space p2λ to be orthogonal, with

norms of all their elements equal R. Thus, the elements Λ, eλ,i, e2λ,j , i =
1, . . . , q1, j = 1, . . . , q2 form the orthogonal basis in the space p and the
elements fλ,i, f2λ,j , i = 1, . . . , q1, j = 1, . . . , q2 form the orthogonal ba-
sis in the space kλ ⊕ k2λ, due to Proposition 1.3. Note that due to (1.5)
〈fλ,i, fλ,i〉 = R2, i = 1, . . . , q1, 〈f2λ,j , f2λ,j〉 = R2, j = 1, . . . , q2.

Proposition 1.4. 1. The relations (1.4) can be rewritten in the following
form:

[Λ, eλ,i] = −1
2
fλ,i, [Λ, fλ,i] =

1
2
eλ,i, [eλ,i, fλ,i] = −1

2
Λ ,

〈eλ,i, eλ,j〉 = 〈fλ,i, fλ,j〉 = δijR
2, i, j = 1, . . . , q1 ,

[Λ, e2λ,i] = −f2λ,i, [Λ, f2λ,i] = e2λ,i, [e2λ,i, f2λ,i] = −Λ ,

〈e2λ,i, e2λ,j〉 = 〈f2λ,i, f2λ,j〉 = δijR
2, i, j = 1, . . . , q2, 〈Λ,Λ〉 = R2.

(1.6)

2. Let X and Y be some elements from the basis

Λ, eλ,i, fλ,i, e2λ,j , f2λ,j , i = 1, . . . , q1, j = 1, . . . , q2 (1.7)

of the space m := a ⊕ kλ ⊕ k2λ ⊕ pλ ⊕ p2λ. Let X ′
m be a projection of an

element X ′ ∈ g onto the space m with respect to the expansion g = k0⊕m.
Expand the element [X,Y ]m in the basis (1.7). Then its coordinates with
respect to the elements X,Y are equal to zero.
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Proof. Relations (1.6) are evident. In view of the inclusions from Proposi-
tion 1.2 it is sufficient to prove the second statement only in the following
cases: a) X = eλ,i, Y = f2λ,j and b) X = fλ,i, Y = f2λ,j . Consider the case
a). From (1.3) we get [f2λ,j , eλ,i] ∈ pλ. The AdG-invariance of the metric 〈·, ·〉
gives 〈[f2λ,j , eλ,i], eλ,i〉 = −〈eλ,i, [f2λ,j , eλ,i]〉 , i = 1, . . . , q1, j = 1, . . . , q2 and
then [f2λ,j , eλ,i]⊥eλ,i. Now, taking into account the orthogonality of the basis
{eλ,i}q1

i=1 of the space pλ , we obtain the second statement in the case a). The
case b) is completely similar. ��

In the following proposition the useful information on Lie algebras g , cor-
responding to curved two-point homogeneous Riemannian spaces is collected.
This information can be found in [28, 65, 134, 135].

Proposition 1.5. Noncompact two-point homogeneous spaces of types 7,8,9,10
are analogous to the compact two-point homogeneous spaces of types 2(3),4,5,6,
respectively. In particular, it means that Lie algebras g of symmetry groups of
analogous spaces are different real forms of a simple (except cases S3,P3(R),
H3(R) , see below) complex Lie algebra g(C). The transition from one such
real form to another one can be done by multiplying the subspace p from the
decomposition g = k ⊕ p by the imaginary unit i (or by −i).2

For spaces S2n,P2n(R),H2n(R) , n � 1 one has g(C) = so(2n + 1, C) =
Bn; for spaces S2n−1 ,P2n−1(R),H2n−1(R), n � 3: g(C) = so(2n, C) =
Dn; for spaces Pn(C),Hn(C), n � 2: g(C) = sl(n + 1, C) = An; for
spaces Pn(H),Hn(H) , n � 2: g(C) = sp(2(n + 1), C) = Cn+1; for spaces
P2(Ca),H2(Ca): g(C) = f4.

Here An,Bn,Cn,Dn are four series of simple complex Lie algebras of the
rank n ∈ N and the Lie algebra f4 of the rank 4 is one of the five simple
exceptional complex Lie algebras3. Their real forms have the same rank n.
For the spaces S3,P3(R),H3(R) one has the complex Lie algebra g(C) =
so(4, C) = so(3, C) ⊕ so(3, C) (the direct sum of Lie algebras). Its real form
so(1, 3), corresponding to the space H3(R), is simple and its compact real
form, corresponding to the spaces S3(R),P3(R), is not: so(4) = so(3)⊕ so(3).

Let S(g)G ≡ S(g)I be the subalgebra of AdG-invariant elements in the
commutative symmetric algebra S(g) for the space g (see Sect. 2.1.2 below).
The algebra S(An)I is freely generated by polynomials of degrees: 2, 3, 4 . . . n+
1; the algebras S(Bn)I and S(Cn)I by polynomials of degrees: 2, 4, 6 . . . 2n;
the algebra S(Dn)I by polynomials of degrees: 2, 4, 6 . . . 2n − 2, n; the algebra
S(f4)I by polynomials of degrees: 2, 6, 8, 12.

Due to the natural isomorphism (g∗)∗ ∼= g the algebra S(g) is isomorphic
to the algebra P(g∗) of all polynomial functions on the dual space g∗. Thus, the
previous paragraph gives also degrees of independent generators for algebras
of invariants of Ad∗

G-action, where G runs over simple complex Lie groups or
their real forms.
2 Actually this transformation is the Weyl unitary trick from representation theory.
3 Other exceptional complex simple Lie algebras are g2, e6, e7, e8 , where indices are

their ranks. Their compact real forms are denoted by the same way.
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A subalgebra a′ of a real semisimple Lie algebra g′ is called R-diagonalizable
if all operators adx, x ∈ a′ correspond to diagonal matrices with respect to
some base in g′. A real rank rkR g′ of g′ is the dimension of any its maximal
R-diagonalizable subalgebra a′ ∈ g′ [65, 135]. The real rank of a compact semi-
simple Lie algebra is null, in particular for the algebras g of local isometries,
corresponding to the spaces of types 2–6. The real rank of g for noncompact
curved two-point homogeneous Riemannian spaces equals 1 and ia is one of the
corresponding diagonalizable subalgebras, where a is given in Proposition 1.2.

It is known that every normal discreet subgroup of any connected topolog-
ical group G′ lies in the center of G′ ([142], lecture 9) and for every connected
Lie group G there is its universal covering π̃ : G̃ → G by connected and
simply connected Lie group G̃. Therefore, the kernel π̃−1(e) of this covering
lies in the center of G̃ and the adjoint (coadjoint) orbits of the groups G̃ and
G ∼= G̃/π̃−1(e) are the same. Let us summarize this fact in the proposition,
useful in the followings.

Proposition 1.6. Let G′ and G′′ be connected locally isomorphic Lie groups.
Then AdG′-orbits coincide with AdG′′-orbits and Ad∗

G′-orbits coincide with
Ad∗

G′′-orbits. If G1 is a Lie group (not necessarily connected) locally isomor-
phic to G′, then each AdG1-orbit consist of some (may be one) AdG′-orbits,
diffeomorphic with each other. The same is valid also for Ad∗

G1
-orbits.

1.3 Models of Classical Compact Two-Point
Homogeneous Riemannian Spaces

1.3.1 The Model for the Space Pn(H)

Let H be the quaternion algebra over the field R with the base 1, i, j,k , where
ij = −ji = k, jk = −kj = i, ki = −ik = j. The quaternion conjugation acts
as follows: x + yi + zj + tk = x − yi − zj − tk, x, y, z, t ∈ R.

Let H
n+1 be the right quaternion space and (z1, . . . , zn+1) be coordinates

on it. Let quaternion projective space Pn(H) be a factor space of the space
H

n+1\(0) with respect to the right action of the multiplicative group H
∗ =

H\(0). The set (z1 : . . . : zn+1) up to the multiplication from the right by an
arbitrary element from the group H

∗ is the set of homogeneous coordinates
for the element4 π1(z) on the space Pn(H), where π1 : H

n+1\(0) → Pn(H)

is the canonical projection. Let 〈x,y〉 :=
n+1∑

i=1

x̄iyi, x = (x1, . . . , xn+1), y =

(y1, . . . , yn+1) ∈ H
n+1 be the standard scalar product in the space H

n+1. Let
z ∈ H

n+1\(0), ξi ∈ TzH
n+1, ζi = π1∗ξi ∈ Tπ1(z) (Pn(H)) , i = 1, 2. A metric

g̃|z(ζ1, ζ2) = (〈ξ1, ξ2〉〈z, z〉 − 〈ξ1, z〉〈z, ξ2〉) /〈z, z〉2 , (1.8)

on the space Pn(H) is the analogue for the metric with a constant sectional
curvature on the space Pn(R) (see Sect. 1.3.3) and the metric with a constant
4 To distinguish the point x ∈ M from their coordinates we shall single out it by

the bold type.



1.3 Models of Classical Compact TPHRS 9

holomorphic sectional curvature on the space Pn(C) (see Sect. 1.3.2). The real
part of the metric (1.8) is a Riemannian metric on the space Pn(H):

g = 4R2 Re g̃ . (1.9)

The normalizing factor 4R2 in (1.9) is chosen due to the following reasons.
The space P1(H) with this metric is the sphere S4 with the standard metric
of the constant sectional curvature R−2. To see this one can consider a home-
omorphism ν : P1(H) → H ∼= S4, ν(z1, z2) = z1 (z2)

−1 = z ∈ H , where H is
the quaternion space completed with the point at infinity. For n = 1 formula
(1.9) has the form

g = 4R2 (dz̄1dz1 + dz̄2dz2)(|z1|2 + |z2|2) − (dz̄1 · z1 + dz̄2 · z2)(z̄1dz1 + z̄2dz2)
(|z1|2 + |z2|2)2

.

(1.10)
Using the formula |z2|2dz1 − z1z̄2dz2 = |z2|2(dz)z2 by direct calculations one
can reduce expression (1.10) to the form:

g =
4R2dzdz̄

(1 + |z|2)2
,

which is the metric of the constant sectional curvature R−2 on the sphere S4

(see Sect. 1.3.3 below).
Let BM (ρ) be a geodesic ball of the radius ρ, SM (ρ) be its boundary (a

geodesic sphere of the radius ρ) in a Riemannian space M , and vol(·) be the
volume function, generated by the metric. It is known [55, 66] that

vol
(
BPn(H)(ρ)

)
=

π2n(2R)4n

(2n + 1)!
sin4n

( ρ

2R

)(
1 + 2n cos2

( ρ

2R

))
.

This implies

vol
(
SPn(H)(ρ)

)
=

d

dρ
vol
(
BPn(H)(ρ)

)
=

π2n(2R)4n−1

4(2n − 1)!
sin4(n−1)

( ρ

2R

)
sin3

( ρ

R

)
,

vol
(
Pn(H)

)
= vol

(
BPn(H)(πR)

)
=

π2n(2R)4n

(2n + 1)!
.

The left action of the group UH(n + 1) , consisting of quaternion matrices
A of the size (n+1)×(n+1) such that ĀT A = E, conserves the scalar product
〈·, ·〉 in the space H

n+1. The real dimension of this group is (2n+3)(n+1). If
we write quaternion coordinates in H

n+1 as pairs of complex numbers, then
the group UH(n + 1) becomes the symplectic group Sp(n + 1).

Left and right multiplications evidently commute, so the left action of the
group UH(n+1) is correctly defined also on the space Pn(H). Obviously, it is
transitive and conserves the metric g. The stationary subgroup of the point
from the space Pn(H) with the homogeneous coordinates (1, 0, . . . , 0) is the
group UH(n)UH(1), where the group UH(n) acts onto the last n coordinates,
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and the group UH(1) acts by the left multiplication of all homogeneous coordi-
nates by quaternions with the unit norm. Stationary subgroups for all points
of a homogeneous space are conjugated and hence isomorphic. This yields the
following isomorphism

Pn(H) � UH(n + 1)/(UH(n)UH(1)) .

The Lie algebra uH(n + 1) consists of quaternion matrices A of the size
(n + 1) × (n + 1) such that ĀT = −A. Let Ekj be the matrix of the size
(n + 1) × (n + 1) with the unique nonzero element equals 1, locating at the
intersection of the kth row and the jth column. Choose the base for the algebra
uH(n + 1) as:

Ψkj =
1
2
(Ekj − Ejk), 1 � k < j � n + 1, Υkj =

i
2
(Ekj + Ejk) ,

Ωkj =
j
2
(Ekj + Ejk), Θkj =

k
2

(Ekj + Ejk), 1 � k � j � n + 1 .

(1.11)

The commutator relations for these elements are:

[Ψkj ,Ψml] =
1
2

(δjmΨkl − δkmΨjl + δklΨjm − δjlΨkm) ,

[Ψkj ,Υml] =
1
2

(δjmΥkl − δkmΥjl + δljΥkm − δlkΥjm) ,

[Υkj ,Υml] =
1
2

(δjmΨlk + δkmΨlj + δklΨmj + δjlΨmk) ,

[Υkj ,Ωml] =
1
2

(δjmΘlk + δkmΘlj + δklΘmj + δjlΘmk) ,

(1.12)

plus the analogous equalities, obtaining from the latter three relations by the
cyclic permutation Υ → Ω → Θ → Υ , where Ψkj = −Ψjk, Ψkk = 0, Υkj =
Υjk, Ωkj = Ωjk , Θkj = Θjk.

1.3.2 The Model for the Space Pn(C)

Taking the factor space of C
n+1\(0) w.r.t the action of the multiplicative

group C
∗ = C\(0) (due to the commutativity of the complex multiplication

it makes no difference left or right), one gets the complex projective space
Pn(C). Let π1 : C

n+1\(0) → Pn(C) be the canonical projection. Let now

〈x,y〉 :=
n+1∑

i=1

x̄iyi, x = (x1, . . . , xn+1), y = (y1, . . . , yn+1) ∈ C
n+1 be the

standard scalar product in the space C
n+1.

The metric g̃ of the constant holomorphic sectional curvature on the space
Pn(C) is defined by the same formula (1.8) as on the space Pn(H), where now
z ∈ C

n+1\(0), ξi ∈ TzC
n+1, ζi = π1∗ξi ∈ Tπ1(z) (Pn(C)) , i = 1, 2.

The Riemannian metric g on the space Pn(C) is:

g = 4R2 Re g̃ . (1.13)
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For n = 2 it is not difficult to verify (like in Sect. 1.3.1) that the homeomor-
phism τ : P1(C) → C̄ ∼= S2 , τ(z1, z2) = z1 (z2)

−1 = z ∈ C , transforms (1.13)
into the metric

g =
4R2dzdz̄

(1 + |z|2)2
,

of the sectional curvature R−2 on the sphere S2 (see Sect. 1.3.3 below).
For the complex projective space one has [55, 66]

vol
(
BPn(C)(ρ)

)
=

πn(2R)2n

n!
sin2n

( ρ

2R

)
, 0 � ρ � πR ,

vol
(
SPn(C)(ρ)

)
=

d

dρ
vol
(
BPn(C)(ρ)

)
=

πn(2R)2n−1

(n − 1)!
sin2(n−1)

( ρ

2R

)
sin
( ρ

R

)
,

vol (Pn(C)) = vol
(
BPn(C)(πR)

)
=

(4πR2)n

n!
.

The left action of the group G = SU(n+1) on the space C
n+1 conserves the

scalar product 〈·, ·〉 and induces the action of SU(n + 1) in the space Pn(C),
conserving metrics g̃ and g.

The stationary subgroup, corresponding to the point of the space Pn(C)
with homogeneous coordinates (1 : 0 : . . . : 0), is the group U(n) =
SU(n)U(1), where the factor SU(n) acts in the standard way onto the last n
coordinates, and the factor U(1) acts by the multiplication of the first coor-
dinate by eiφ and the second one by e−iφ, φ ∈ R mod 2π. This leads to the
isomorphism Pn(C) � SU(n + 1)/U(n).

Choose a base of the algebra su(n + 1) in the form:

Ψkj =
1
2
(Ekj − Ejk), Υkj =

i
2
(Ekj + Ejk), 1 � k < j � n + 1 , (1.14)

Υk =
i
2
(E11 − Ekk) , 2 � k � n + 1 .

The commutators for these elements are easily extracted from (1.12), taking
into account the equality Υk = 1

2 (Υ11 − Υkk).

1.3.3 Models for Spaces Sn, Pn(R) and Hn(R)

Let now 〈·, ·〉 be the standard scalar product in the space R
n+1. The equation

〈x,x〉 = R > 0 defines the sphere Sn ∼= SO(n + 1)/SO(n) ⊂ R
n+1 of the

radius R with the induced metric on it. The real projective space Pn(R) is the
factor space of Sn w.r.t. the relation: x ∼ −x.

Let

Ψkj =
1
2
(Ekj − Ejk), 1 � k < j � n + 1 (1.15)

be the base of the algebra so(n + 1). The commutator relations for them are
contained in (1.12).

The sphere Sn can be described also as the space R
n ∪∞ with the metric
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gs = 4R2
n∑

i=1

dy2
i

/(

1 +
n∑

i=1

dy2
i

)2

, (1.16)

where yi are Cartesian coordinates in R
n.

Indeed, consider the stereographic projection of the sphere Sn ⊂ R
n+1

from the point x′ = (0, . . . , 0,−R) onto the subspace P1 = (x ∈ R
n|xn+1 = 0).

Let the line passing through points x,x′ ∈ Sn intersects the subspace P1 at
the point x̃. Then this projection maps the point x into the point x̃. The
point x′ is mapped into ∞. Let C be the equator of Sn lying in the plane P1.
It consists of stationary points w.r.t. this projection. Big circles on the sphere
Sn are geodesics and they are transformed into those Euclidean circles on P1,
that intersect C in antipodal points, and into Euclidean straight lines passing
through 0 ∈ P1.

Simple computations give

x̃i =
Rxi

R + xn+1
, i = 1, . . . , n, r̃2 :=

n∑

i=1

x̃2
i =

R − xn+1

R + xn+1
R2 , (1.17)

and formulas for the inverse map:

xi =
2R2x̃i

R2 + r̃2
, i = 1, . . . , n, xn+1 =

R2 − r̃2

R2 + r̃2
R . (1.18)

It is easily obtained that under this map the restriction of the Euclidean
metric

∑n+1
i=1 dx2

i in R
n+1 onto Sn is transformed into the metric

gs = 4R4
n∑

i=1

dx̃2
i

/
(
R2 + r̃2

)2
,

and the substitution x̃i =: Ryi leads to (1.16).
One can write the metric (1.16) in the spherical form

gs = 4R2
(
dr2 + r2g̃s

)/ (
1 + r2

)2
, r2 :=

n∑

i=1

y2
i , (1.19)

where g̃s is the standard metric on the unit sphere Sn−1. For the new coordi-
nate v = 2r/(1 − r2) it also holds

gs = R2

(
dv2

(1 + v2)2
+

v2g̃s

1 + v2

)
. (1.20)

This form of the metric corresponds to the stereographic projection of the
sphere Sn from the point 0 ∈ R

n+1 onto the subspace P2 = (x ∈ R
n+1|xn+1 =

R), where vR is the Euclidean distance between a point from P2 and the fixed
point x′′ = (0, . . . , 0, R) ∈ Sn. Obviously, this projection is a double covering
of P2 with singularities on the sphere Sn−1 = Sn ∩ P1, which is mapped into
∞. Straight lines in P2 are geodesics of metric (1.20) since they are images
of big circles on Sn. Let ρ be the distance from the point r = 0 in the metric
(1.19). Then one gets
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r = tan
( ρ

2R

)
, v = tan

( ρ

R

)
. (1.21)

Now one has [55]:

vol (BSn(ρ)) =
2πn/2Rn

Γ(n
2 )

∫ ρ/R

0

sinn−1 t dt, 0 � ρ � πR ,

vol (SSn(ρ)) =
d

dρ
vol (BSn(ρ)) =

2πn/2Rn−1

Γ(n
2 )

sinn−1
( ρ

R

)
,

vol (Sn) = vol (BSn(πR)) =
2π

n+1
2 Rn

Γ(n+1
2 )

,

where Γ is the gamma-function (see appendix B). The first two formulas for
Pn(R) are the same with 0 � ρ � πR/2 and

vol (Pn(R)) =
π

n+1
2 Rn

Γ(n+1
2 )

.

Consider the similar construction for the hyperbolic space Hn(R) embed-
ded in the standard way as a one sheet of the two-sheet hyperboloid

−
n∑

i=1

x2
i + x2

n+1 = R2, xn+1 � R > 0 (1.22)

into the space R
n+1 endowed with the Minkowski metric

n∑

i=1

dx2
i − dx2

n+1 . (1.23)

The stereographic projection from the point x′ = (0, . . . , 0,−R) onto the
subspace P1 maps the sheet of hyperboloid with xn+1 � R > 0 onto the open
ball in P1 of the radius R with the center at 0 ∈ R

n+1. This map is a bijection.
Now it holds

x̃i =
Rxi

R + xn+1
, i = 1, . . . , n, r̃2 =

n∑

i=1

x̃2
i =

xn+1 − R

xn+1 + R
R2 < R2 ,

xi =
2R2x̃i

R2 − r̃2
, i = 1, . . . , n, xn+1 =

R2 + r̃2

R2 − r̃2
R .

Under this map the restriction of the Minkowski metric (1.23) onto the
sheet of hyperboloid with xn+1 � R is transformed into the metric

gh = 4R4
n∑

i=1

dx̃2
i

/
(
R2 − r̃2

)2
,

and the substitution x̃i =: Ryi leads to

gh = 4R2
n∑

i=1

dy2
i

/(

1 −
n∑

i=1

dy2
i

)2

,

n∑

i=1

y2
i < 1. (1.24)
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This model of the hyperbolic space in the unit ball is known as the Poincaré
one.

The same metric in the spherical form is

gh = 4R2
(
dr2 + r2g̃s

)/ (
1 − r2

)2
, r < 1 , (1.25)

where g̃s is the same metric as in (1.19).
The Euclidean sphere defined in P1 by the equation r = 1 is called the

absolute. The arcs of Euclidean circles or segments of lines that are orthogonal
(in Euclidean sense) to the absolute are geodesics in the hyperbolic geometry.

For the coordinate v = 2r/(1 + r2) one gets

gh = R2

(
dv2

(1 − v2)2
+

v2g̃s

1 − v2

)
. (1.26)

This form of the metric corresponds to the stereographic projection of the
same sheet from the point 0 ∈ R

n+1 onto the subspace P2 = (x ∈ R
n+1|xn+1 =

R), where vR is the Euclidean distance between a point from P2 and the fixed
point x′′ = (0, . . . , 0, R). Straight lines in P2 are again geodesics of metric
(1.26) since geodesics of metric (1.23) on the hyperboloid are cut by two
dimensional planes in R

n+1 passing through 0 ∈ R
n+1. This model of the

hyperbolic space in the unit ball is known as the Beltrami-Klein one.
For the distance ρ from the point r = 0 in the metric (1.25) one obtains

the formulas:
r = tanh

( ρ

2R

)
, v = tanh

( ρ

R

)
. (1.27)

There is known also the Poincaré model of the hyperbolic space in the upper
half space:

R
n
+ := (x ∈ R

n|xn > 0) , (1.28)

with the metric:

gh =
R2

x2
n

n∑

i=1

dx2
i .

In this model the lines xi = ci = const, i = 1, 2, . . . , n − 1 and the arcs of
Euclidean circles that are orthogonal (in Euclidean sense) to the hyperplane,
defined in R

n by the equation xn = 0, are geodesics. The union of this hyper-
plane and the point at infinity is the absolute.

The group of all linear transformations of the space R
n+1, conserving met-

ric (1.23), is called pseudoorthogonal group and is denoted by O(1, n). It con-
sists of four connected components. Two of these components map one sheet
of the two-sheet hyperboloid (1.22) into another one. Two other components
form the isometry group for Hn(R). Let O0(1, n) be the identity component
for O(1, n). It acts transitively on Hn(R) with a stationary subgroup isomor-
phic to SO(n).

There are three types of actions of one parameter subgroups exp(tX), X ∈
g, t ∈ R of the group O0(1, n) in the hyperbolic space Hn(R) [11]. A one pa-
rameter subgroup, isomorphic to S1, conserves all points of some completely
geodesic submanifold, isomorphic to Hn−2(R) for n � 4, and is called rota-
tion. In small dimension it conserves all points of some geodesic (for n = 3)
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or some point (for n = 2) and is called rotation about this geodesic (an axis
of a rotation) for n = 3 or about this point (a center of a rotation) for n = 2.
The corresponding element X is called elliptic. Euclidean rotations in two-
dimensional Euclidean planes passing through the point yi = 0, i = 1, . . . , n
are examples of such transformations for the model (1.24). The similar rota-
tions in two dimensional Euclidean planes parallel to the hyperplane, defined
in R

n by the equation xn = 0, are examples of such transformations for the
model (1.28).

If a one-parameter subgroup of O0(1, n), isomorphic to R, conserves some
geodesic then it is called a transvection along this geodesic (an axis of a
transvection). The corresponding element X ∈ so(1, n) is called hyperbolic.
The dilation xi → etxi, t ∈ R for the model (1.28) is an example of such
transformations.

The last type of action of a one-parameter subgroup of O0(1, n), is a par-
abolic action of R. An example of this transformation for the model (1.28) is
the Euclidean shift x → x + tc, t ∈ R, where x ∈ R

n
+, c ∈ R

n, cn = 0. For
H2(R) it shifts points along the system of horocycles that are lines orthogonal
at each point to all geodesics having a common point on the absolute. The
corresponding element X ∈ so(1, n) is called parabolic.

Due to the transitivity of an isometry group an every elliptic, hyperbolic
or parabolic transformation is conjugated with transformations from these
examples.

One can formally transform many formulas valid for the spherical metric
(1.16) into formulas valid for the hyperbolic metric (1.24) by the substitution

yi → ∓iyi, r → ∓ir, v → ∓iv, R → ±iR , (1.29)

due to well-known formulas

cos(ix) = cosh x, sin(ix) = i sinx, arctan(ix) = i arctanh x. (1.30)

This transition corresponds to the transition described in Proposition 1.5.
Note that the factor ±i in Proposition 1.5 correspond to the factor ∓i in
(1.29) since elements of Lie algebras correspond to vector fields, which are
differential operators of the first order.

The similar correspondence is valid for other two-point homogeneous
spaces.

1.4 The Model of the Projective Cayley Plane

Our description of the Cayley algebra Ca and the octonionic projective plane
P2(Ca) in this section is based upon [2, 10] and [142].

1.4.1 The Algebra Ca

According to Frobenius theorem there are only four finite-dimensional divi-
sion algebras over R: R itself and algebras C, H, Ca. The latter is an eight



16 1 Two-Point Homogeneous Riemannian Spaces

dimensional normed division algebra of octonions. It is noncommutative and
nonassociative, but alternative, i.e., for any two elements ξ, η ∈ Ca it holds
(ξη)η = ξ(ηη) and ξ(ξη) = (ξξ)η. The group of all automorphisms of Ca is
the exceptional simple compact real 14-dimensional Lie group G2. The stan-
dard base of Ca over R is (ei)

7
i=0 , where e0 = 1 ∈ R and e2

i = −1, eiej =
−ejei, i, j = 1, . . . , 7, i 
= j. The elements (ei)

7
i=1 are multiplied according to

the following scheme:

Fig. 1.1.

e4

e1

e6

e3

e2
e5 e7

Here, eiej = ek if these elements lie on one line or on the circle and are
ordered by arrows as ei, ej , ek. The octonionic conjugation ι : Ca �→ Ca acts
as ι(e0) ≡ e0 = e0, ι(ei) ≡ ei = −ei, i = 1, . . . , 7 and is extended by linearity
over whole Ca. Let Re ξ := 1

2 (ξ + ξ̄), Im ξ := 1
2 (ξ − ξ̄) be the real and the

imaginary parts of ξ ∈ Ca. Define the scalar product in Ca by the formula:

〈η, ξ〉 =
1
2
(η̄ξ + ξ̄η) = Re(ξ̄η) = Re(η̄ξ) ∈ R and the norm by the formula

‖η‖ = 〈η, η〉1/2. In the algebra Ca every two elements generate an associative
subalgebra and the following central Moufang identity is valid:

u · xy · u = ux · yu, u, x, y ∈ Ca . (1.31)

Here we use the notations u · xy := u(xy), xy · u := (xy)u.
There are the following description of left and right spinor representations

(both 8-dimensional) of the group Spin(8) in Ca [134, 142], which will be used
later. Define linear operators in Ca:

Lα : ξ �→ 1
2
eαξ, α = 1, . . . , 7, ξ ∈ Ca ,

Lα,β : ξ �→ 1
2
eα(eβξ), 1 � α < β � 7, ξ ∈ Ca .

These operators are generators of the left spinor representation of the group
Spin(8), i.e., they are the images of some base of the Lie algebra spin(8) under
this representation. Similarly, operators

Rα : ξ �→ 1
2
ξeα, α = 1, . . . , 7, ξ ∈ Ca ,

Rα,β : ξ �→ 1
2
(ξeβ)eα, 1 � α < β � 7, ξ ∈ Ca

are generators of the right spinor representation of the group Spin(8). All
these operators are skew symmetric w.r.t. the scalar product in Ca.
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Formulae above define operators Lα,β , Rα,β also for 1 � β < α � 7. If Ca′

is the space of pure imaginary octonions, u ∈ Ca′, ξ ∈ Ca, then due to the
alternativity of Ca:

ξu · u = ξu2 = −ξ|u|2 = −|u|2ξ = u · uξ .

For u = eα + eβ , 1 � α < β � 7 it holds

−2ξ = −ξ|eα + eβ |2 = ξ(eα + eβ) · (eα + eβ)
= ξeα · eα + ξeα · eβ + ξeβ · eα + ξeβ · eβ = −ξ + ξeα · eβ + ξeβ · eα − ξ

and ξeα ·eβ+ξeβ ·eα = 0. Similarly, eα ·eβξ+eβ ·eαξ = 0. For 0 � i, j � 7, i 
= j
we can write more general formulae:

ei · ejξ = −ēj · ēiξ, ξei · ej = −ξēj · ēi, ξ ∈ Ca , (1.32)

useful in the followings.
In particular, we have Lα,β = −Lβ,α, Rα,β = −Rβ,α, 1 � α, β � 7, α 
= β.
The group Spin(8) is the double covering of the group SO(8) and the

tautological representation of the latter induced the vector representation of
Spin(8), evidently also 8-dimensional. For the element q ∈ Spin(8) denote by
qL, qR and qV its images under left spinor, right spinor and vector representa-
tion respectively. The following proposition is a version of the triality principle
for the group Spin(8)5.

Proposition 1.7 ([142]). For any element q ∈ Spin(8) it holds

qV (ξη) = qL(ξ) · qR(η), ξ, η ∈ Ca . (1.33)

Conversely, if A,B,C are orthogonal operators Ca �→ Ca such that

A(ξη) = B(ξ) · C(η) ,

for any ξ, η ∈ Ca , then there exist a unique q ∈ Spin(8) such that A =
qV , B = qL, C = qR.

From (1.33) we get its infinitesimal analogs:

Vi(ξη) = Li(ξ) · η + ξ · Ri(η), i = 1, . . . , 7 ,

Vi,j(ξη) = Li,j(ξ) · η + ξ · Ri,j(η), 1 � i < j � 7, ξ, η ∈ Ca ,
(1.34)

where Vi and Vi,j are generators of the vector representation of the group
Spin(8).

1.4.2 The Jordan Algebra h3(Ca)

The Hermitian conjugation A �→ A∗ for square matrix with octonion entries
is defined as the composition of the octonionic conjugation and the transpo-
sition of A, similar to complex and quaternion cases. A matrix A is called
5 Other versions of this principle can be found in [10].
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Hermitian iff A∗ = A. The simple exceptional Jordan algebra h3(Ca) consists
of all Hermitian 3 × 3 matrices with octonion entries. It is endowed with the
Jordan commutative multiplication:

X ◦ Y =
1
2
(XY + Y X), X, Y ∈ h3(Ca) .

This multiplication satisfies the identity (X2 ◦ Y ) ◦ X = X2 ◦ (Y ◦ X),
which is the condition for an algebra with commutative (but not necessar-
ily associative) multiplication to be Jordan. The Jordan algebra h3(Ca) is
27-dimensional over R. Every its element can be represented in the form:

X = a1E1 + a2E2 + a3E3 + X1(ξ1) + X2(ξ2) + X3(ξ3) , (1.35)

where

E1 =




1 0 0
0 0 0
0 0 0



 , E2 =




0 0 0
0 1 0
0 0 0



 , E3 =




0 0 0
0 0 0
0 0 1



 ,

X1(ξ) =




0 0 0
0 0 ξ
0 ξ̄ 0



 , X2(ξ) =




0 0 ξ̄
0 0 0
ξ 0 0



 , X3(ξ) =




0 ξ 0
ξ̄ 0 0
0 0 0



 ,

ai ∈ R, ξi ∈ Ca, i = 1, 2, 3. It is easy to show that

Ei ◦ Ej =
{

Ei, if i = j,

0, if i 
= j,

Ei ◦ Xj(ξ) =
{

0, if i = j,
1
2Xj(ξ), if i 
= j,

(1.36)

Xi(ξ) ◦ Xj(η) =
{ 〈ξ, η〉(E − Ei), if i = j,

1
2Xi+j(ξη), if j ≡ i + 1 mod 3,

where E = E1 +E2 +E3 is the unit matrix. In the last formula all indices are
considered modulo 3.

The group of all automorphisms of the Jordan algebra h3(Ca) is the simple
compact 52-dimensional exceptional real Lie group F4. This group conserves
the following bilinear and trilinear forms: A(X,Y ) = Tr(X ◦Y ), B(X,Y,Z) =
A(X ◦ Y,Z). Conversely, every linear operator h3(Ca) �→ h3(Ca), conserving
these two forms, belongs to F4.

Define the norm of the element (1.35) as ‖X‖2 = A(X,X) =
∑3

i=1(a
2
i +

2|ξi|2). The last equality is the consequence of (1.36).

Theorem 1.4 (Freudenthal, [142]). For any element X ∈ h3(Ca) there
exists an automorphism Φ ∈ F4 such that

ΦX = λ1E1 + λ2E2 + λ3E3 , (1.37)

where λ1 � λ2 � λ3. Expansion (1.37) is uniquely determined by X. Two
elements from h3(Ca) lie on one F4-orbit, iff their diagonal forms (1.37) are
the same.
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1.4.3 The Octonionic Projective Plane P2(Ca)

Elements X ∈ h3(Ca) satisfying conditions

X2 = X , Tr X = 1 (1.38)

form the octonionic projective plane P2(Ca), which is a 16-dimensional real
manifold. Automorphisms of h3(Ca) conserves (1.38) and the group F4 acts
on P2(Ca). From the Freudenthal theorem and (1.38) it follows that every
element of P2(Ca) can be transformed by an appropriate element from F4

into the element E1. Thus P2(Ca) is a homogeneous space of the group F4

and calculations in [142] (lecture 16) show, that the stationary subgroup of
every point X ∈ P2(Ca) is isomorphic to the group Spin(9).

Suppose that an element

X = (1 + a1)E1 + a2E2 + a3E3 + X1(ξ1) + X2(ξ2) + X3(ξ3) ∈ P2(Ca)

belongs to a neighborhood of E1 , i.e., real numbers ai, |ξi|, i = 1, 2, 3 are
sufficiently small. Then due to (1.36) we have

X◦X = (1+2a1)E1+X2(ξ2)+X3(ξ3)+O(s) , where s :=

(
3∑

i=1

(a2
i + |ξi|2)

)

and the equality X ◦ X = X implies ai = O(s), i = 1, 2, 3, ξ1 = O(s).
This means that one can identify the tangent space TE1P

2(Ca) with the set
(X2(ξ2) + X3(ξ3) | ξ2, ξ3 ∈ Ca).

Let K ⊂ F4 be the stationary subgroup corresponding to the point E1 and
acting by automorphisms in the space TE1P

2(Ca) � (X2(ξ2)+X3(ξ3) | ξ2, ξ3 ∈
Ca). Let K0 be the stationary subgroup of K, corresponding to the element
X3(1) ∈ TE1P

2(Ca).
Let us find the K0-action in the space TE1P

2(Ca). For any element X ∈
h3(Ca) let ann X := (Y ∈ h3(Ca) |Y ◦ X = 0). Since an element Φ ∈ K0 is
an automorphism of the algebra h3(Ca), it conserves the space ann X3(1). It
follows from (1.36) that

ann X3(1) = (a(E1 − E2) + bE3 + X3(ξ) | a, b ∈ R, ξ ∈ Ca′) .

Let Φ(E1 − E2) = a(E1 − E2) + bE3 + X3(ξ), then one has

1 = A (E1 − E2, E1) = A (Φ(E1 − E2),Φ(E1))
= A (a(E1 − E2) + bE3 + X3(ξ), E1) = a .

This implies Φ(E1−E2) = E1−E2+bE3+X3(ξ) and the equality ‖E1−E2‖ =
‖Φ(E1 − E2)‖ gives b = 0, ξ = 0. It means that Φ(E2) = E2 and therefore
Φ(E3) = Φ(E −E1 −E2) = E −E1 −E2 = E3. Thus, the group K0 conserves
elements E1, E2, E3.

Let K ′ be the maximal subgroup of F4 conserving elements E1, E2, E3. We
see that K0 ⊂ K ′ ⊂ K. Since annE1 = {a2E2 +a3E3 +X1(ξ), a1, a2 ∈ R, ξ ∈
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Ca} , the group K ′ maps X1(ξ) �→ X1(ξ̃) and similarly Xi(ξi) �→ Xi(ξ̃i), i =
1, 2, 3.

Let Φi : Ca �→ Ca, i = 1, 2, 3 be orthogonal operators such that ΦXi(ξi) =
Xi (Φi(ξi)) for Φ ∈ K ′. The last formula in (1.36) implies

X3

(
Φ3(ξη)

)
= Φ

(
X3(ξη)

)
= 2Φ (X1(ξ) ◦ X2(η)) = 2Φ (X1(ξ)) ◦ Φ(X2(η))

= 2X1 (Φ1(ξ)) ◦ X2 (Φ2(η)) = X3

(
Φ1(ξ)Φ2(η)

)
.

This gives
Φ1(ξ)Φ2(η) = Φ3

(
ξη
)

, (1.39)

for Φ ∈ K ′, ξ, η ∈ Ca.
Denote by Cai, i = 1, 2, 3 the domains of the operators Φi, i = 1, 2, 3. Then

one can identify the space TE1P
2(Ca) with Ca∗

2 ⊕Ca∗
3 , where the superscript

* denotes a dual space.6 Formula (1.39) and Proposition 1.7 imply.

Proposition 1.8. Operators Φ1 and Φ2 are respectively left and right spinor
representations of the group Spin(8) � K ′ and the composition ι ◦Φ3 ◦ ι is the
vector representation of Spin(8).

Since the group Spin(8) is the universal (double) covering of the group
SO(8), the Lie algebras spin(8) and so(8) are isomorphic.

Now consider representations of the Lie algebra k′ of the group K ′ in
Cai, i = 1, 2, 3. All these representations are faithful. For A ∈ k′ denote by
A(i) the corresponding skew symmetric operator in Cai, i = 1, 2, 3. From
(1.39) one gets the following infinitesimal analogue of the triality principle:

A(1)(ξ) · η + ξ · A(2)(η) = A(3)(ξη) . (1.40)

From (1.34) we obtain that if A(1) = Li (respectively A(1) = Li,j), then
A(2) = Ri, A(3) = ι ◦ Vi ◦ ι (respectively A(2) = Ri,j , A(3) = ι ◦ Vi,j ◦ ι).

Let us identify the algebra k′ with its vector representation in Ca3 , in
particular we put A ≡ A(3) for A ∈ k′. By κ denote the inclusion of k′ into
the Lie algebra f4 corresponding to the group F4.

By the definition, the Lie algebra k0 of the group K0 ⊂ K ′ consists of the
skew symmetric operators in Ca3 , transforming 1 ∈ Ca3 into 0. Therefore,
from above one gets the following proposition.

Proposition 1.9. The group K0 is isomorphic to Spin(7) , acting in Ca1

by the left spinor representation, in Ca2 by the right spinor representation
(equivalent for Spin(7) to the left one, see (3.40) below), and in Ca′

3 by the
vector representation. These representations are restrictions of corresponding
representations of the group K ′ � Spin(8).

Let m be a space of 3 × 3 skew-Hermitian matrices with octonion entries
and the zero trace. Let
6 Here we consider octonions ξ ∈ Ca2 and η ∈ Ca3 as coordinates of elements X2(ξ)

and X3(η) respectively.
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Y1(ξ) =




0 0 0
0 0 ξ
0 −ξ̄ 0



 , Y2(ξ) =




0 0 −ξ̄
0 0 0
ξ 0 0



 , Y3(ξ) =




0 ξ 0
−ξ̄ 0 0
0 0 0



 , ξ ∈ Ca

be elements from m. Assume also that the linear subspace m0 ⊂ m consists of
elements of the form

3∑

i=1

Yi(ξi), ξi ∈ Ca .

From [142] (lecture 16) we can extract the following proposition:

Proposition 1.10. For any Y ∈ m the linear operator ad Y : h3(Ca) �→
h3(Ca) , acting according to the formula ad Y (X) = Y X − XY, X ∈ h3(Ca)
is a differentiation of the algebra h3(Ca). Thus, the space m is contained in
the Lie algebra f4. There is the expansion of f4 into the direct sum of linear
spaces

f4 � k′ ⊕ m0

with the following commutator relations

[κA, ad Yi(ξ)] = adYi(A(i)ξ), i = 1, 2, 3 , (1.41)

[ad Yi(ξ), ad Yj(η)] =

{
κCi,ξ,η, if j = i ,

ad Yi+2

(
−ξη

)
, if j = i + 1 ,

(1.42)

where A ≡ A(3) ∈ k′, ξ, η ∈ Ca, operators A(i) are from (1.40), the indices in
(1.42) are considered modulo 3 and skew-Hermitian operators Ci,ξ,η : Ca3 �→
Ca3, i = 1, 2, 3 are given by the following formulas:

C1,ξ,η : ζ �→ ζξ · η̄ − ζη · ξ̄ ,

C2,ξ,η : ζ �→ η̄ · ξζ − ξ̄ · ηζ, ζ ∈ Ca (1.43)
C3,ξ,η : ζ �→ 4〈ξ, ζ〉η − 4〈η, ζ〉ξ .

The action of operators κCi,ξ,η in the spaces Ca1 and Ca2 is obtained
from (1.43) by the cyclic permutation of indices:

κC1,ξ,η|Ca1
: ζ �→ 4〈ξ, ζ〉η − 4〈η, ζ〉ξ ,

κC2,ξ,η|Ca1
: ζ �→ ζξ · η̄ − ζη · ξ̄ ,

κC3,ξ,η|Ca1
: ζ �→ η̄ · ξζ − ξ̄ · ηζ ,

κC1,ξ,η|Ca2
: ζ �→ η̄ · ξζ − ξ̄ · ηζ ,

κC2,ξ,η|Ca2
: ζ �→ 4〈ξ, ζ〉η − 4〈η, ζ〉ξ ,

κC3,ξ,η|Ca2
: ζ �→ ζξ · η̄ − ζη · ξ̄ .

(1.44)

Note that in [142] (lecture 16) analogs of formulae (1.39), (1.41) and the last
formula (1.36) contain errors.

The volume function on the octonion projective plane P2(Ca) obeys the
following equalities [55, 66]:



22 1 Two-Point Homogeneous Riemannian Spaces

vol
(
BP2(Ca)(ρ)

)
=

6π8(2R)16

11!
sin16

( ρ

2R

)(
1 + 8 cos2

( ρ

2R

)
+ 36 cos4

( ρ

2R

)

+120 cos6
( ρ

2R

))
,

vol
(
SP2(Ca)(ρ)

)
=

d

dρ
vol
(
BP2(Ca)(ρ)

)
=

29π8R15

7!
sin8

( ρ

2R

)
sin7

( ρ

R

)
,

vol
(
P2(Ca)

)
= vol

(
BP2(Ca)(πR)

)
=

6π8(2R)16

11!
.

The description of the octonion projective plane P2(Ca) through the Jor-
dan algebra h3(Ca) is not an exceptional case in the theory of two-point ho-
mogeneous spaces. Other compact two-point homogeneous spaces also could
be described through corresponding Jordan algebras [10]. Therefore, this de-
scription seems to be more fundamental than the models in Euclidean spaces
in the Sect. 1.3, but also more cumbersome.
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Differential Operators on Smooth Manifolds

The property of a differential operator on a smooth manifold M to be in-
variant with respect to an action of some group G (especially a Lie group)
on M plays a great role in mathematical physics since it helps select physi-
cally significant operators. The algebra DiffG(M) of all G-invariant differential
operators with complex or real coefficients on M gives the material for con-
structing G-invariant physical theories on M . Properties of such theory are in
close connection with properties of the algebra DiffG(M).

A homogeneous smooth manifold M of the Lie group G is called commuta-
tive space, if the algebra DiffG(M) is commutative. The well-known example
of a commutative space is the symmetric space of the rank l. The commutative
algebra DiffG(M) for this space is generated by l independent commutative
generators [64]. Particularly, for symmetric spaces of the rank one and there-
fore for two-point homogeneous Riemannian spaces the algebra DiffG(M) is
generated by the Laplace–Beltrami operator. Also, the class of commutative
spaces contains weakly symmetric spaces [199].

There are known only some sporadic examples of noncommutative algebras
DiffG(M) (see, for example, Chap. 2 from [66]). One of these example is
the noncommutative algebra DiffO0(1,n)(M1) for M1 = O0(1, n)/SO(n − 1)
described in [146], where the space M1 was interpreted as the total space for
the unit sphere bundle over the hyperbolic space Hn(R). Other examples of
noncommutative algebras DiffG(M) were considered in [168] and are described
below in Chap. 3.

2.1 Invariant Differential Operators on Lie Groups
and Homogeneous Manifolds

2.1.1 Basic Notations

This section contains basic facts from the theory of invariant differential op-
erators on homogeneous manifolds [62, 64, 66, 67]. The main results are the
following: an algebra of invariant differential operators on G-homogeneous
manifolds is finitely generated over the basic field; it is described in terms

A.V. Shchepetilov: Calculus and Mechanics on Two-Point Homogeneous Riemannian Spaces,
Lect. Notes Phys. 707, 23–49 (2006)
DOI 10.1007/3-540-35386-0 2 c© Springer-Verlag Berlin Heidelberg 2006
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of the universal enveloping algebra U(g); there is a one-to-one linear corre-
spondence between invariant differential operators and their symbols, defined
below as elements of the symmetric algebra S(g).

For our purposes it is enough to suppose that the basic field is R, however
most results in this section are valid also for the basic field C.

Let G be a connected Lie group, dimG = N and M be a smooth G-
homogeneous manifold, dimM = m. Let also Kx0 ⊂ G be the stationary
subgroup of a point x0 ∈ M and kx0 ⊂ g ≡ TeG be the corresponding Lie
subalgebra, where e ∈ G is the unit element. Choose a subspace px0 ⊂ g such
that g = px0 ⊕ kx0 (a direct sum of linear spaces). From now the point x0 is
fixed in this section and we omit the index x0 in notations for Kx0 , kx0 , px0

and so on.
Identify the space M with the factor space G/K of left cosets. Let π1 :

G → G/K be the natural projection. Denote by

Lq : q1 → qq1, Rq : q1 → q1q, q, q1 ∈ G

the left and the right shifts on the group G and by

τq : x → qx, q ∈ G, x ∈ M

the action of an element q ∈ G on M . Obviously, π1 ◦ Lq = τq ◦ π1, q ∈ G
and π1 ◦ Rq = π1, q ∈ K. Let the left and the right shifts act on the space
C∞(G) as:

L̂q(f)(q1) = f(q−1q1), R̂q(f)(q1) = f(q1q
−1), f ∈ C∞(G), q, q1 ∈ G .

Similarly, the left shift acts on the space C∞(M) as:

τ̂q(f)(x) = f(q−1x), f ∈ C∞(M), q, q1 ∈ G .

Then it holds L̂q1q2 = L̂q1 ◦ L̂q2 , R̂q1q2 = R̂q2 ◦ R̂q1 , τ̂q1q2 = τ̂q1 ◦ τ̂q2 , L̂q1 ◦
R̂q2 = R̂q2 ◦ L̂q1 , q1, q2 ∈ G.

Let Diff(G) and Diff(M) be algebras of differential operators with smooth
real coefficients on G and M respectively. Define the action of shifts on oper-
ators as:

L̃q(�) = L̂q ◦ � ◦ L̂q−1 , R̃q(�) = R̂q ◦ � ◦ R̂q−1 , � ∈ Diff(G) ,

τ̃q(�) = τ̂q ◦ � ◦ τ̂q−1 , � ∈ Diff(M) .

Define also the following subalgebras:

LDiff(G) :=
{

� ∈ Diff(G)| L̃q(�) = �, ∀q ∈ G
}

,

DiffG(M) := {� ∈ Diff(M)| τ̃q(�) = �, ∀q ∈ G} ,

RDiff(G) :=
{

� ∈ Diff(G)| R̃q(�) = �, ∀q ∈ G
}

,

LRDiff(G) :=
{

� ∈ LDiff(G)| R̃q(�) = �, ∀q ∈ G
}

,

LDiffK(G) :=
{

� ∈ LDiff(G)| R̃q(�) = �, ∀q ∈ K
}

.
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An algebra A is called filtered if there is a sequence {Fi}∞i=1 of its subspaces
such that

F1 ⊂ F2 ⊂ · · · ⊂ A =
∞⋃

i=1

Fi, FiFj ⊂ Fi+j .

An algebra A is called graded if there is a sequence {Ai}∞i=1 of its sub-

spaces such that A =
∞⊕

i=1

Ai and AiAj ⊂ Ai+j . For a filtered algebra A the

corresponding graded algebra grA is
∞⊕

i=1

Fi/Fi−1. If a ∈ Fi/Fi−1, b ∈ Fj/Fj−1

then the product ab evidently belongs to Fi+j/Fi+j−1.
A degree of an element a of a filtered algebra A equals i iff a ∈ Fi \ Fi−1.

Algebras Diff(M) and Diff(G) have the standard filtrations for which spaces
Diff(M)i and Diff(G)i consist of differential operators of degree � i. For any
algebra A denote by ZA the center of A.

Let e1, . . . , eN be a base in g such that e1, . . . , em is a base in p and
em+1, . . . , eN is a base in k. There are corresponding moving frames on the
group G consisting respectively of the following left and right invariant vector
fields:

X l
i(q) = (dLq)ei, Xr

i (q) = (dRq)ei, i = 1, . . . , N, q ∈ G .

There are also the moving coframes Xi
l (q),X

i
r(q). For an element Y ∈ g

we shall denote by Y l and Y r the corresponding left- and right-invariant
vector fields on G and by Ỹ the corresponding vector field on M : Ỹ =
d
dt exp(tY )x

∣
∣
t=0

, x ∈ M . Evidently, it holds dπ1(Y r) = Ỹ . Note that left
invariant vector fields correspond to right G-shifts on G and conversely right
invariant vector fields correspond to left G-shifts on G.

Define the commutator of vector fields1 X ′, Y ′ ∈ X (M) through their
action on functions f ∈ C∞(M):

[X ′, Y ′]f = X ′(Y ′f) − Y ′(X ′f) .

It is well known that the correspondence X → X̃, X ∈ g changes signs of
commutators (see, for example, [17], 7.21):

[̃X,Y ] = −[X̃, Ỹ ] . (2.1)

In particular
[X,Y ]r = −[Xr, Y r] . (2.2)

On the other hand, a right action of a Lie group conserves signs of commuta-
tors. In particular for the right action of G on itself one has:

[X,Y ]l = [X l, Y l] . (2.3)

1 For any smooth manifold M , not necessarily endowed with a G-action.
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2.1.2 Invariant Differential Operators on a Lie Group

Let U1(g) ⊂ U2(g) ⊂ · · · ⊂ U(g) be the standard filtration of the universal
enveloping algebra U(g) for g, where Uk(g) consists of elements of the form
Pi(e1, . . . , eN ) , 1 � i � k; Pi is a polynomial of degree i without a con-
stant term2. Since [Ui(g), Uj(g)] ⊂ Ui+j−1(g), the graded algebra grU(g) is
commutative.

Let S(V ) be a symmetric algebra for a finite-dimensional real linear space
V , i.e., a free commutative algebra over the field R, generated by elements of
any basis of V . This algebra is graded by its subspaces Si(V ), i � 1 consisting
of homogeneous polynomials with their degrees equal to i.

For an element Y ∈ g we denote by Y ∗ the corresponding element from
S(g). The adjoint action of the group G on g can be naturally extended to
the action of G on the algebra U(g) according to the formula:

Adq : Y1 · . . . · Yi → Adq(Y1) · . . . · Adq(Yi), Y1, . . . , Yi ∈ g ,

and similarly to the action of G on S(g).
The following theorem is well known [28, 41, 142].

Theorem 2.1 (Poincaré-Birgoff-Witt). The commutative algebras gr U(g)
and S(g) are isomorphic. The set (ei1 · . . . · eik

| 1 � i1 � · · · � ik � N ; k ∈ N)
is a base in U(g) .

Proposition 2.1 ([41], 2.4.5, 2.4.6). The linear symmetrization map λ :
S(g) → U(g) , defined on monomials by the formula

λ(e∗i1 · . . . · e
∗
ik

) =
1
k!

∑

σ∈Sk

eiσ(1) · . . . · eiσ(k) ,

where Sk is the group consisting of all permutations of k elements, is an
isomorphism of linear spaces.

For any subgroup K ′ of the group G denote by U(g)K′
and S(g)K′

the sets
of all AdK′ -invariant elements in U(g) and S(g) respectively. Proposition 2.1
and the evident equality λ ◦ Adq = Adq ◦λ, ∀q ∈ G implies:

λ
(
S(g)K′

)
= U(g)K′

. (2.4)

We can consider vector fields on G as differential operators of the first
order and any differential operator on the group G can be expressed as a
polynomial in X l

i or in Xr
i , i = 1, . . . , N with nonconstant coefficients. It is

clear that every polynomial combination of left invariant vector fields on G
with constant coefficients is an element from LDiff(G). This correspondence
defines the homomorphism ι : U(g) → LDiff(G). Recall that everywhere by a
polynomial on noncommutative arguments we mean an ordered one, i.e., each
its monomial is an ordered product.
2 We do not include the basic field R into U(g) as did some authors [41, 158], who

put U0(g) := R, [U0(g), U(g)] = 0.
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Theorem 2.2. The homomorphism ι : U(g) → LDiff(G) is an isomorphism.

Proof. We should only prove that the map ι is surjective. Let D ∈ LDiff(G),
then there is the polynomial P such that

(Df)(e) = P (∂/∂t1, . . . , ∂/∂tN )f
(
exp(t1e1 + . . . + tNeN )

)
, f ∈ C∞(G) ,

since the set (t1, . . . tN ) ∈ R
N is normal coordinates of the point exp(t1e1 +

. . .+ tNeN ) in some neighborhood of the unit element e ∈ G. Then due to the
left invariance of D

(Df)(q) = P (∂/∂t1, . . . , ∂/∂tN )f
(
q exp(t1e1 + . . . + tNeN )

)
, q ∈ G .

Let
D∗ =

1
N !

∑

σ∈SN

P (eσ1 , . . . , eσN
) ∈ U(g) .

We claim that ι(D∗) = D. For X = tiei ≡
∑N

i=1 tiei ∈ g one has

(
tiX l

i

)k
f(q) =

(
X l
)k

f(q) =
dk

dtk
f (g exp tX)

∣
∣
∣
∣
t=0

=
(

tj
∂

∂yj

)k

f
(
q exp(yiei)

)
∣
∣
∣
∣
∣
yi=0

,

where k ∈ N, yi := tti. Comparing the terms proportional to the monomial∏k
i=1 tji , where 1 � ji � N , in both sides of the last equality, we get

1
k!

∑

σ∈Sk

X l
jσ(1)

◦ . . . ◦ X l
jσ(k)

f(q) =

(
k∏

i=1

∂

∂yji

)

f(q exp(yjej))

∣
∣
∣
∣
∣
yj=0

.

This means that an operator � ∈ LDiff(G) of the form

� : f(q) →
(

k∏

i=1

∂

∂yji

)

f(q exp(yjej))

∣
∣
∣
∣
∣
yj=0

lies in ι(U(g)). By linearity we see that ι(D∗) = D and LDiff(G) = ι(U(g)).
��

From this proof and Proposition 2.1 one gets also:

Corollary 2.1. The composition λ∗ := ι◦λ is an isomorphism of linear spaces
S(g) → LDiff(G) and the following formula holds:

(
λ∗(P (Y ∗

i1 , . . . , Y
∗
ik

))f
)
(q) = P (∂/∂ti1 , . . . , ∂/∂tik)

×f
(
q exp(ti1Yi1 + . . . + tikYik

)
)∣∣

t=0
(2.5)

=
1
k!

∑

σ∈Sk

P
(
Y l

iσ(1)
, . . . , Y l

iσ(k)

)
f(q) ,

where Yij
∈ g, j = 1, . . . , k and P is a polynomial.
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For an operator � ∈ LDiff(G) we call the element (λ∗)−1� ∈ S(g) the
lie-symbol of �. Let Ãdq� := L̃q ◦ R̃q−1(�), � ∈ Diff(G), q ∈ G; then clearly,
Ãdq is an automorphism of algebras Diff(G), LDiff(G), RDiff(G). Obviously,

Ãdq� = R̃q−1(�), � ∈ LDiff(G) .

Lemma 2.1. For an arbitrary element q ∈ G it holds the following identity
Ãdq ◦ ι = ι ◦ Adq of two maps from U(g) to LDiff(G).

Proof. For X ∈ g and f ∈ C∞(G) one has

Ãdq ◦ ι(X)(f)
∣
∣
∣
g

= L̃q ◦ R̃q−1 ◦ ι(X)(f)
∣
∣
∣
g

= R̃q−1 ◦ ι(X)(f)
∣
∣
∣
g

= R̂q−1 ◦ ι(X)
(
R̂qf

)∣∣
∣
g

=
d

dt
f
(
gq exp(tX)q−1

)
∣
∣
∣
∣
t=0

=
d

dt
f (g exp (t Adq X))

∣
∣
∣
∣
t=0

= (ι ◦ Adq X(f)) (g); g, q ∈ G .

Due to Theorem 2.2 elements ι(X), X ∈ g generate LDiff(G), therefore it
holds Ãdq ◦ ι = ι ◦ Adq. ��

Proposition 2.2. Z LDiff(G) = λ∗(S(g)G).

Proof. Since algebras LDiff(G) and U(g) are isomorphic, it holds ι(Z U(g)) =
Z LDiff(G).

The center Z U(g) coincides with the set U(g)G. Indeed, if Y ∈ U(g)G,
then [X,Y ] = d

dt Adexp(tX) Y
∣
∣
t=0

= 0, ∀X ∈ g and therefore [A, Y ] = 0, ∀A ∈
U(g). Conversely, if Y ∈ Z U(g), then

d

dt
Adexp(tX) Y =

d

dt
Adexp(tX) ◦

d

ds
Adexp(sX) Y

∣
∣
∣
∣
s=0

= Adexp(tX)[X,Y ] = 0 ,

∀X ∈ g, ∀t ∈ R. Therefore Adexp X Y = Y, ∀X ∈ g and Adq Y = Y, ∀q ∈ G,
since a connected Lie group is generated by any neighborhood of its unit
element.

Now the proposition follows from (2.4). ��

The Killing form Kilg′(X,Y ) on any Lie algebra g′ is defined as the trace
of the map Z → [X, [Y,Z]], X, Y, Z ∈ g′.

Suppose that the Lie algebra g is semisimple, then its Killing form Kilg
is nondegenerate. Let ei, i = 1, . . . , N be a base in g and ej , j = 1, . . . , N be
the dual base such that Kilg(ei, e

j) = δj
i .

Lemma 2.2. The element C := eie
i ∈ U(g) does not depend on the choice of

the base ei and lies in Z U(g). Also, it holds C = eiei. Thus ι(C) ∈ Z LDiff(G).

Proof. If ēi = aj
iej is another base in g , then its dual base is ēj = bj

ie
i, where

bi
kak

j = δi
j . One obtains that ēiē

i = aj
i b

i
keje

k = δj
keje

k = eje
j . Similarly,

eiei = ēiēi.
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The Killing form is adg-invariant. Therefore

αj
i (X) := Kilg([X, ei], ej) = −Kilg(ei, [X, ej ]) =: −βj

i (X), ∀X ∈ g ,

where [X, ei] = αj
i (X)ej , [X, ei] = βi

j(X)ej . Thus

[X,C] = [X, ei]ei + ei[X, ei] = αj
i (X)eje

i + βi
j(X)eie

j

=
(
αj

i (X) + βj
i (X)

)
eje

i = 0 .

It is well known that the base ei can be chosen in such a way that ei = ±ei.
In this case one gets the equality C = eiei = eie

i, which is valid therefore for
an arbitrary base due to the first claim of the lemma. ��

In fact, the element C was introduced by H. Casimir in [33]. Its image
under any representation of g is called a Casimir operator.

2.1.3 Invariant Differential Operators on a Homogeneous Spaces

Functions on the G-homogeneous space M ∼= G/K are in one-to-one corre-
spondence with functions on the group G that are invariant under the right
action of the subgroup K. This correspondence is defined by the formula
ζ : f → f̃ := f ◦ π1, where f is a function on the space M , f̃ is the corre-
sponding function on the group G, and as before π1 is the canonical projection
G → G/K. If f is smooth, then so is f̃ . Define a map

η : LDiffK(G) → DiffG(M)

by the formula

η(�)f = ζ−1 ◦ � ◦ ζ(f), f ∈ C∞(M), � ∈ LDiffK(G) .

This map is well defined, since the function � ◦ ζ(f) is right-invariant with
respect to the subgroup K. Evidently, the map η is a homomorphism.

Assume now that the space M is reductive, i.e., AdK p ⊂ p and then
[p, k] ⊂ p .

This assumption will be valid in the case when M is a Riemannian space
and G is its isometry group or a subgroup of this group. Indeed, in this case
the stationary subgroup K is compact, since it is also the subgroup of the
group SO(m). By the group averaging on K one can define a AdK-invariant
scalar product on g and choose the subspace p orthogonal to k with respect
to this product [66, 92]. This case is the only one which we consider in the
following chapters in connection with two-point homogeneous spaces.

In some neighborhood of the point x0 ∈ M one can define coordinates
(x1, . . . , xm), of the point π1(exp(

∑m
i=1 xiei)). Let P

(
∂

∂x1 , . . . , ∂
∂xm

)
be a poly-

nomial expression of an operator � ∈ DiffG(M) at the point x0. Define a map:

κ : DiffG(M) → S(p) ⊂ S(g) , (2.6)
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by the formula κ(�) = P (e∗1, . . . , e
∗
m) ∈ S(p). By direct calculations we see

that the map κ doesn’t depend on the choice of the basis in the space p. We
call the element κ(�) the lie-symbol of the operator � ∈ DiffG(M). In the
case M = G one gets the same lie-symbol as in the previous section.

Since τ̂q−1 ◦ � ◦ τ̂q = �, ∀q ∈ G, for any f ∈ C∞(M) one has

(�f)(qx0) = τ̂q−1 ◦ �(f)(x0) = � ◦ τ̂q−1(f)(x0)

= P

(
∂

∂x1
, . . . ,

∂

∂xm

)
f

(

π

(

q exp(
m∑

i=1

xiei)

))∣∣
∣
∣
∣
xi=0

(2.7)

= P

(
∂

∂x1
, . . . ,

∂

∂xm

)
f̃

(

q exp(
m∑

i=1

xiei)

)∣∣
∣
∣
∣
xi=0

= η ◦ λ∗(P (e∗1, . . . , e
∗
m))f(qx0) .

The last equality follows from (2.5). Consider q ∈ K. Let Adq ei =: Aj
iej and

yj := Aj
ix

i. Then ∂
∂xi = Aj

i
∂

∂yj , Adq e∗i = Aj
ie

∗
j and due to qx0 = x0 it holds

(�f)(x0) = P

(
∂

∂x1
, . . . ,

∂

∂xm

)
f̃

(

exp

(
m∑

i=1

xi Adq ei

))∣∣
∣
∣
∣
xi=0

= P̃

(
∂

∂y1
, . . . ,

∂

∂ym

)
f̃

(

exp(
m∑

i=1

yiei)

)∣∣
∣
∣
∣
yi=0

,

where P̃ (e∗1, . . . , e
∗
m) = P (Adq e∗1, . . . ,Adq e∗m) = Adq P (e∗1, . . . , e

∗
m), since the

map κ does not depend on a choice of the basis for the space p and, in
particular, it is not changed by the transition to the basis Adq ei. On the other
hand, polynomials P and P̃ are two expressions of the operator � at the point
x0, so P̃ (e∗1, . . . , e

∗
m) = P (e∗1, . . . , e

∗
m) , i.e., P (e∗1, . . . , e

∗
m) ∈ S(p)K , where

S(p)K is the set of all AdK-invariant elements in S(p). Note that S(p)K ⊂
S(g)K .

Reasoning in the reverse order, we get from (2.7), that if P (e∗1, . . . , e
∗
n) ∈

S(p)K , then λ∗(P (e∗1, . . . , e
∗
n)) ∈ LDiffK(G) and η ◦ λ∗(P (e∗1, . . . , e

∗
n)) ∈

DiffG(M) . Also, the expression of the operator η ◦ λ∗(P (e∗1, . . . , e
∗
n)) at the

point x0 through coordinates x1, . . . , xm is again P
(

∂
∂x1 , . . . , ∂

∂xm

)
, therefore

κ ◦ η ◦ λ∗ = id .
The formula (2.7) implies η ◦ λ∗ ◦ κ = id, i.e., the following diagram is

commutative:

S(p)K �λ
U(g)K �ι LDiffK(G)

DiffG(M) �id DiffG(M)
�

���κ
�

���
η

Hence the maps κ is bijective, the map η is surjective and the map λ∗ = ι◦λ
is injective that implies

LDiffK(G) = λ∗(S(p)K) ⊕ ker η . (2.8)
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Lemma 2.3. For any Lie algebra g′ and any its subalgebra k′ denote by U(g′)k′

the left ideal in U(g′) generated by k′. Let g′ = p′ ⊕ k′ be an expansion of g′

into a direct sum of linear subspaces. Then the linear space U(g′) admits the
expansion:

U(g′) = U(g′)k′ ⊕ λ(S(p′)) . (2.9)

Proof. The proof is by the straightforward induction with respect to the de-
gree of a polynomial expression of an element from U(g′) through elements of
g′. ��

Let (U(g)k)K be the set of all AdK-invariant elements in U(g)k. It is a
two-sided ideal in U(g)K , since for elements f ∈ k and g ∈ U(g)K one has
fg = adf g + gf = gf . Thus, the factor algebra U(g)K/(U(g)k)K is well
defined. If k′ = k, p′ = p , then both summand in (2.9) are AdK-invariant and
we have

U(g)K = (U(g)k)K ⊕ λ(S(p)K) . (2.10)

According to Theorem 2.2 the map ι : U(g) → LDiff(G) is an isomorphism.
Therefore, the Lemma 2.1 implies that the map ι|U(g)K is an isomorphism
between algebras U(g)K and LDiffK(G). From (2.8) and (2.10) one gets

LDiffK(G) = ι
(
U(g)K

)
= ι

(
(U(g)k)K

)
⊕ λ∗(S(p)K) . (2.11)

Clearly η ◦ ι
(
(U(g)k)K

)
= 0 and comparing (2.11) with (2.8) we obtain

ι
(
(U(g)k)K

)
= ker η .

The considerations above can be concluded in the following theorem:

Theorem 2.3. The homomorphism η ◦ ι induces the isomorphism

ι∗ : U(g)K/(U(g)k)K → DiffG(M) .

The map η ◦ λ∗ = η ◦ ι ◦ λ is the linear bijection of linear spaces S(p)K and
DiffG(M) .

The filtration of the algebra U(g) induces the filtration of the algebra
DiffG(M), which coincides with the natural filtration of DiffG(M) as the al-
gebra of differential operators.

Since Z LDiff(G) ⊂ LDiffK(G), from Proposition 2.2 and Lemma 2.2 one
gets

Corollary 2.2. The set η ◦ λ∗(S(g)G) and the element η ◦ ι(C) lie in
Z DiffG(M) .

This means that every AdG-invariant element from S(g) induces the element
from Z DiffG(M) . The operator η ◦ ι(C) is the Casimir one.

Remark 2.1. We shall use an operator λ∗ ◦κ(�) ∈ LDiffK(G) as a lift �̃ of
an operator � ∈ DiffG(M) onto the group G .

The following theorem gives a prescription for calculating this lift.
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Theorem 2.4. Let �|x0
= P (Ỹ1, . . . , Ỹk)

∣
∣
∣
x0

, where P is a polynomial in-

variant with respect to any permutation of its arguments, Y1, . . . , Yk ∈ g and
Ỹ1, . . . , Ỹk are corresponding Killing vector fields. Then it holds λ∗ ◦ κ(�) =
P (Y l

1 , . . . , Y l
k) . This formula for the lift depends on the expansion g = k⊕p ≡

kx0 ⊕ px0 .

Proof. Since

Ỹ kf(x0) =
dk

dtk
f (exp(tY )x0)

∣
∣
∣
∣
t=0

, Y ∈ g, f ∈ C∞(M) ,

by the same arguments as in the proof of Theorem 2.2 we obtain for every
polynomial P̃ and elements Y1, . . . , Yk ∈ g the formula:

1
k!

∑

σ∈Sk

P̃
(
Ỹ1, . . . , Ỹk

)
f(x0)

= P̃
(
∂/∂t1, . . . , ∂/∂tk

)
f
(
exp(t1Y1 + . . . + tkYk)x0

)∣∣
ti=0

.

This yields

�f(x0) = P
(
Ỹ1, . . . , Ỹk

)
f(x0)

= P
(
∂/∂t1, . . . , ∂/∂tk

)
f
(
exp(t1Y1 + . . . + tkYk)x0

)∣∣
ti=0

.

Thus, κ(�) = P (Y ∗
1 , . . . , Y ∗

k ) and, due to corollary 2.1 and the symmetry of
P , one gets: λ∗ ◦ κ(�) = P

(
Y l

1 , . . . , Y l
k

)
. ��

The theoretical base for calculation invariants in Chap. 3 is the following
proposition:

Proposition 2.3 ([201] Chap. 11, theorems 3, 4). Let G be a compact Lie
group, acting in a real or complex vector space V . Then the algebra S(V ∗)G

of its polynomial invariants is finitely generated. If the space V is real, then
orbits of the G-action are separated by polynomial invariants.

In the search of invariant elements we shall use also the following obvious
lemma.

Lemma 2.4. Let a group G acts in Euclidean space V, dim V = m by or-
thogonal transformations. Let ei, i = 1, . . . m be an orthonormal base and
xi, i = 1, . . . m be corresponding coordinates. Let P (x1, . . . , xm) be a polyno-
mial invariant of G-action in V . Then P (e1, . . . , em) is a G-invariant element
from S(V ) and this is a one-to-one correspondence between polynomial invari-
ants in V and invariant elements in S(V ).

Proof. If Ag is a matrix of an action of g ∈ G in the base x1, . . . , xm of the
space V ∗, then AT

g is the matrix of g-action in the base e1, . . . , em. Due to the
orthogonality of G-action in V one has AT

g = A−1
g = Ag−1 . This completes

the proof. ��
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2.1.4 Representation of the Algebra DiffG(M)
by Generators and Relations

Let

P (a1, . . . , ak) =
∑

l

∑

(i1,...,il)

p(i1,...,il)ai1 · . . . · ail
, (2.12)

be an ordered polynomial, where (i1, . . . il) are selections from the set (1, . . . , k),
ai are elements of some associative algebra A over a field K, and p(i1,...,il) ∈ K.
Call polynomial (2.12) symmetric if all its coefficients p(i1,...,il) satisfy the
equality:

p(i1,...,il) = p(σ(i1),...σ(il)) , ∀σ ∈ Sl .

Let π2 : U(g)K → U(g)K/(U(g)k)K be the canonical projection. One can
get the relations in DiffG(M) ∼= U(g)K/(U(g)k)K operating in U(g)K modulo
(U(g)k)K . This approach leads to simpler calculations than the operations
through local coordinates on M (like in [146]), which require quite cumber-
some calculation even in the relatively simple case of M = Hn(R)S.

Let (gi) be a set of generators3 of the commutative algebra S(p)K ⊂
S(p). Without loss of generality one can suppose that all gi are homogeneous
elements w.r.t. the grading of S(p). Then due to the expansion (2.10) the
elements π2 ◦ λ(gi) generate the algebra U(g)K/(U(g)k)K .

Relations for the elements π2 ◦ λ(gi) are of two types. First type consists
of relations induced by relations in U(g). Due to the universality of U(g)
all these relation are commutator ones, induced by the Lie operation in g.
They are reduced to commutator relations or relations of the first type of the
simplest form: [D1,D2] = D̃, where the operators D1,D2 ∈ U(g)K/(U(g)k)K

have degrees m1 and m2 respectively and the degree of D̃ ∈ U(g)K/(U(g)k)K

is less or equal m1 + m2 − 1.
Suppose now that there is a relation in U(g)K/(U(g)k)K of the form

P (π2 ◦ λ(g1), . . . , π2 ◦ λ(gk)) = 0

or equivalently in U(g) of the form

P (λ(g1), . . . , λ(gk)) = D̃ , (2.13)

where P (λ(g1), . . . , λ(gk)) is an ordered polynomial and D̃ ∈ (U(g)k)K . Using
the commutator relations for λ(gi), i = 1, . . . , k, one can reduce the polyno-
mial P (λ(g1), . . . , λ(gk)) to a symmetric polynomial Ps(λ(g1), . . . , λ(gk)) and
(2.13) becomes:

Ps(λ(g1), . . . , λ(gk)) =
∑

l

∑

(i1,...,il)

p(i1,...,il)λ(gi1) · . . . · λ(gil
) = D∗ , (2.14)

where (i1, . . . il) are selections from the set (1, . . . , k) and D∗ ∈ (U(g)k)K .
Relation (2.14) may be trivial:
3 There could be some polynomial relations or syzygies between them. Relations

between syzygies, if exist, are called syzygies of the second order and so on.
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p(i1,...,il) = 0, ∀(i1, . . . , il), D∗ = 0 .

This means that (2.13) is a commutator relation. Suppose that relation
(2.14) is nontrivial. Let P1(λ(g1), . . . , λ(gk)) be the sum of monomials from
the polynomial Ps(λ(g1), . . . , λ(gk)) with the highest total degree in U(g).
Consider the polynomial P1(t1, . . . , tk) with commutative variables t1, . . . , tk.
Due to the definition of the symmetric polynomial (2.14), the polynomial
P1(t1, . . . , tk) is also nontrivial. On the other hand from (2.14) one gets that
P1(g1, . . . , gk) = 0 due to the expansion g = p ⊕ k. Therefore any relation for
generators π2 ◦ λ(g1), . . . , π2 ◦ λ(gk) of the algebra U(g)K/(U(g)k)K modulo
commutator relations and relations of lower degrees corresponds to the rela-
tion for homogeneous generators g1, . . . , gk of the commutative algebra S(p)K .
We call such relations the relations of the second type.

Conversely, let
P1(g1, . . . , gk) = 0

be a nontrivial relation in the algebra S(p)K . Without loss of generality one
can suppose that the polynomial P1(g1, . . . , gk) is homogeneous (i.e., all its
monomials have the same degree d in S(p)) and ordered. Then it is evident
that

P1(λ(g1), . . . , λ(gk)) = D̃ , (2.15)

where D̃ is an element from U(g)K of a degree less than d. After reducing
relation (2.15) modulo (U(g)k)K one gets the relation in U(g)K/ (U(g)k)K :

P (π2 ◦ λ(g1), . . . , π2 ◦ λ(gk)) = 0 ,

where P is a polynomial of the degree d, coinciding in leading terms with the
polynomial P1.

Thus, one gets

Proposition 2.4. There is a one-to-one correspondence described above be-
tween relations for generators g1, . . . , gk in the algebra S(p)K and relations for
generators π2 ◦ λ(g1), . . . , π2 ◦ λ(gk) in the algebra U(g)K/ (U(g)k)K modulo
relations of lower degree and commutator relations.

For simplicity throughout the whole book we consider invariance of dif-
ferential operators only w.r.t. the identity component of a whole isometry
group.

There exists a unique (up to a constant factor) left- (or right-) invariant
measure on any Lie group (the Haar measure [66, 88]). Denote by µG some
left-invariant Haar measure on G. A measure on the space M , generated by
a G-invariant metric is also G-invariant. All G-invariant measures on M are
proportional [66] and one will define such a measure if one puts µM (V ) =
µG(π−1

1 (V )) for any compact set V ∈ M . The group Kx0 is compact, so
the set π−1

1 (V ) is also compact and µG(π−1
1 (V )) < ∞. The measure µM is

left-invariant, since the measure µG is left-invariant.
Left-invariant measures on all unimodular groups and particulary on com-

pact groups are also right-invariant. The change of the point x0 ∈ M by
x1 = qx0, q ∈ G leads to the change of the pullback π−1

1 (V ) by π−1
1 (V )q−1,
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while identifying M with G/Kx0 . Therefore, the G-invariant measure µM for
the unimodular group G does not depend on the choice of x0.

2.2 Laplace–Beltrami Operator in a Moving Frame

In this section we do not regard M as a homogeneous manifold with respect
to the isometry group until the homogeneity is declared explicitly. Here we
shall find the polynomial P from Theorem 2.4, corresponding to the Laplace–
Beltrami operator on a Riemannian space M . First, let us obtain the expres-
sion for the Laplace–Beltrami operator in arbitrary moving frame.

Denote the metric on M by g. Let xi, i = 1, . . . , m be local coordinates in a
domain U ⊂ M and gijdxidxj be the corresponding expression of the metric
g on U . The range for all indices in this section is 1, . . . ,m. The Laplace–
Beltrami operator generated by the metric g has the following form on U :

�g = (γ)−1/2 ∂

∂xi

(
√

γgij ∂

∂xj

)
, (2.16)

where γ = |det gij | and gij(x) is the inverse of the matrix gij(x). The op-
erator �g is conserved by all isometries of the space M . Conversely, if the
operator �g is conserved by some diffeomorphism of the space M , then this
diffeomorphism is an isometry [66].

Let ξi = φk
i (x)∂/∂xk be vector fields on U forming a moving frame. Any

vector field is a differential operator of the first order. Using a composition one
can express any differential operator on U via this moving frame with some
(generally nonconstant) coefficients. Let ‖ψi

j‖ be the inverse for the matrix
‖φk

i ‖. Then ∂/∂xk = ψm
k ξm and ĝij := g(ξi, ξj) = φk

i φm
j gkm are the coefficients

of the metric g with respect to the moving frame ξi. This implies that ĝij =
ψi

kgknψj
n and γ̂ := |det ĝij | = φ2γ, where φ = det ‖φk

i ‖. Substituting these
formulae in (2.16), one gets:

�g = (γ̂)−1/2φψq
i ξq ◦

(
φ−1γ̂1/2φi

kĝknφj
nψp

j ξp

)

= (γ̂)−1/2φψq
i ξq ◦

(
φ−1γ̂1/2φi

kĝknξn

)

= (γ̂)−1/2ψq
i φi

kξq ◦
(
γ̂1/2ĝknξn

)
+ φψq

i ĝknξq

(
φ−1φi

k

)
ξn

= (γ̂)−1/2ξk ◦
(
γ̂1/2ĝknξn

)
+ ĝknLkξn ,

where Lk = φψq
i ξq

(
φ−1φi

k

)
= ψq

i ξq

(
φi

k

)
+φξk

(
φ−1

)
= ψq

i ξq

(
φi

k

)
−φ−1ξk(φ) .

Denote Φ(x) = ‖φi
k(x)‖. Using the well-known formula det exp(A) =

exp(TrA), where A is an arbitrary complex matrix, we get:

φ−1ξk(φ) = ξk(ln φ) = ξk (ln exp(Tr ln Φ)) = ξk (Tr ln Φ)

= Tr
(
Φ−1ξk(Φ)

)
= ψq

i ξk(φi
q) ,

(2.17)

since Tr(AB) = Tr(BA) for any square matrices A and B. On the other hand,
the following equations for commutators of vector fields
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[ξi, ξj ] = ξi

(
φk

j

) ∂

∂xk
− ξj

(
φk

i

) ∂

∂xk
=
(
ξi

(
φk

j

)
− ξj

(
φk

i

))
ψq

kξq =: cq
ijξq

define the functions
cq
ij =

(
ξi

(
φk

j

)
− ξj

(
φk

i

))
ψq

k

on U . So, in view of (2.17), one has:

Lk =
(
ξq

(
φi

k

)
− ξk

(
φi

q

))
ψq

i = cq
qk .

Thus, the formula for the Laplace–Beltrami operator in the moving frame ξi

is:
�g = (γ̂)−1/2

ξq ◦
(√

γ̂ĝqnξn

)
+ ĝkncq

qkξn . (2.18)

Suppose now that ξi are Killing vector fields for the metric g in U .4 Transform
formula (2.18) to the form �g = aijξi ◦ ξj + biξi . It is clear that aij = ĝij and
one only has to find the coefficients bi. It is well-known that

X (g(Y,Z)) = (£Xg)(Y,Z) + g([X,Y ], Z) + g(Y, [X,Z]), X, Y, Z ∈ X (M) ,
(2.19)

where £X is a Lie derivative with respect to a field X. Now formulae £ξk
g = 0,

(2.17), (2.18) and (2.19) imply

biĝij = γ̂−1/2ξk(γ̂1/2ĝki)ĝij + ĝkicq
qk ĝij = ξk(ĝkiĝij) − ξk(ĝij)ĝ

ki +
1

2γ̂
ξk(γ̂)ĝkiĝij

+ cq
qkδk

j = ξk(δk
j ) − ξk(g(ξi, ξj))ĝ

ki +
1

2
ĝqiξk(ĝqi)δ

k
j + cq

qj = −g([ξk, ξi], ξj)ĝ
ki

− g(ξi, [ξk, ξj ])ĝ
ki +

1

2
ĝqig([ξj , ξq], ξi) +

1

2
ĝqig(ξq, [ξj , ξi]) + cq

qj = −ĝiqcq
kj ĝ

ki

+
1

2
ĝqick

jq ĝki +
1

2
ĝqick

jiĝqk + cq
qj = −cq

qj +
1

2
cq
jq +

1

2
cq
jq + cq

qj = cq
jq ,

(2.20)

taking into account the antisymmetry of the tensor cq
ki with respect to lower

indices. Thus, one gets bi = cq
jq ĝ

ji. We can summarize this reasoning in the
following proposition:

Proposition 2.5. In the moving frame ξi, consisting of Killing vector fields,
the Laplace–Beltrami operator has the following form

�g =
m∑

i,j=1

ĝijξi ◦ ξj +
m∑

i,j,q=1

cq
jq ĝ

jiξi .

If the space M is homogeneous and ξi = ẽi, i = 1, . . . ,m in notations of Sect.
2.1, then theorem 2.4 implies that the lift of the operator �g onto the group
G has the form:

�̃g =
m∑

i,j=1

ĝij
∣
∣
x0

X l
i ◦ X l

j +
m∑

i,j,q=1

cq
jq ĝ

ji
∣
∣
x0

X l
i .

4 One can find a moving frame, consisting of Killing vector fields, on any homoge-
neous Riemannian manifold.
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Remark 2.2. Sometimes vector fields ξi can be chosen in such a way that
cq
jq = 0. In this case one has �g = ĝijξi ◦ ξj and �̃g = ĝij

∣
∣
x0

X l
i ◦ X l

j .

In the sequel, we shall use the expression for the Levi-Civita connection
∇ with respect to Killing vector fields:

Lemma 2.5 ([17], 7.27). Let ξi, i = 1, 2, 3 be Killing vector fields. Then

g(∇ξ1ξ2, ξ3) =
1
2
g(ξ1, [ξ2, ξ3]) +

1
2
g(ξ2, [ξ1, ξ3]) +

1
2
g([ξ1, ξ2], ξ3) .

In particular,
g(∇ξ1ξ1, ξ3) = g(ξ1, [ξ1, ξ3]) . (2.21)

Proof. First, we shall prove that if X is a Killing vector field and Y,Z are
arbitrary smooth vector fields, then

g(∇Y X,Z) + g(∇ZX,Y ) = 0 .

In particular for Z = Y or Z = X:

g(∇Y X,Y ) = −g(∇Y X,Y ) = 0, g(∇Y X,X) = −g(∇XX,Y ) . (2.22)

Indeed, it holds

0 = (£Xg)(Y,Z) = X(g(Y,Z)) − g([X,Y ], Z) − g(Y, [X,Z])
= g(∇XY,Z) + g(Y,∇XZ) − g(∇XY,Z) + g(∇Y X,Z)
− g(Y,∇XZ) + g(Y,∇ZX)

= g(∇Y X,Z) + g(Y,∇ZX) ,

where we used the fact that the Levi-Civita connection ∇ is torsion free:
∇Y Z − ∇ZY = [Y,Z]. Using (2.22) and the torsion free property again one
gets:

g([ξ1, ξ3], ξ1) = g(∇ξ1ξ3 −∇ξ3ξ1, ξ1) = g(∇ξ1ξ1, ξ3) .

After polarization (i.e., using substitution ξ1 → ξ1 + ξ2)) the latter formula
implies:

g([ξ1, ξ3], ξ2) + g([ξ2, ξ3], ξ1) = g(∇ξ1ξ2, ξ3) + g(∇ξ2ξ1, ξ3)
= 2g(∇ξ1ξ2, ξ3) + g([ξ2, ξ1], ξ3) .

��

2.3 Self-Adjointness of Hamiltonians

2.3.1 Self-Adjointness of Operators in Abstract Hilbert Spaces

According to Stone’s theorem [144] a Hamiltonian H of a quantum mechan-
ical system defines a quantum dynamic (a one parametric group of unitary
transformations in a Hilbert space H) if and only if H is a self-adjoint op-
erator in H. This section contains basic facts, connected with the notion of
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the self-adjointness (for details see [44, 144, 145]), which is used below for
differential operators on Riemannian manifolds.

Let H be an unitary Hilbert space with a scalar product 〈·, ·〉H, that is
conjugate linear w.r.t. the first argument and linear w.r.t. the second one. Let
T : H ⊃ Dom(T ) → H be a linear operator defined on a linear subspace5

Dom(T ) ⊂ H , dense in H .
Let Dom(T ∗) be a linear subspace of the space H , consisting of all

ϕ ∈ H such that the map ψ → 〈Tψ, ϕ〉H is a bounded linear functional
on Dom(T ) . Since Dom(T ) = H , the Riesz lemma [144] implies that for
every ϕ ∈ Dom(T ∗) there exists a unique element χ ∈ H such that

〈Tψ, ϕ〉H = 〈ψ, χ〉H, ∀ψ ∈ H .

Define the linear operator T ∗ adjoint to T by the formula T ∗ϕ = χ .
The operator T is called symmetric if T ⊂ T ∗, i.e., if Dom(T ) ⊂ Dom(T ∗)

and Tϕ = T ∗ϕ, ∀ϕ ∈ Dom(T ) . The operator T is called self-adjoint if T =
T ∗; in other words if T is symmetric and Dom(T ) = Dom(T ∗) .

In many cases it is hard to find a domain of self-adjointness for a symmetric
operator. This motivates the notion of essential self-adjointness. The linear
subspace

Γ(T ) := ((ϕ,ψ) ∈ H ⊕H | ϕ ∈ Dom(T ), ψ = Tϕ)

of the space H⊕H is called the graph of T . If the closure Γ(T ) of Γ(T ) w.r.t.
the scalar product 〈·, ·〉H⊕H is a graph of some linear operator T (evidently
it is equivalent to the fact that in Γ(T ) there are no elements of the form
(0, ψ), 0 
= ψ ∈ H) , then T is called closable and T is the closure of T . For
every operator T the operator T ∗ is closed and T is closable iff Dom(T ∗) = H .
In the latter case T = T ∗∗ (theorem VIII.1 in [144]). For a symmetric operator
T it holds Dom(T ) ⊂ Dom(T ∗) and therefore a symmetric operator is closable.

The following theorem is well known, see for example [85]:

Theorem 2.5. The following conditions for a symmetric operator T are
equivalent

1. T is self-adjoint ;
2. T has a unique self-adjoint extension ;
3. T ∗ = T ∗∗;
4. T ∗ is symmetric .

If any (and thus all) of above conditions holds, then T is called essentially
self-adjoint. If T |D is essentially self-adjoint for some linear subspace D, then
this subspace is called an essential domain for T .

All these facts are valid for unbounded as well as for bounded operators
T . In the latter case Dom(T ) = H. Quantum mechanical Hamiltonians are
symmetric and most of them are unbounded. Due to the Hellinger-Toeplitz
theorem [144] an everywhere defined symmetric operator H → H is bounded.
Therefore, in quantum mechanics the situation Dom(T ) 
= H is typical.

5 We do not suppose a linear subspace in H to be closed.
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A sesquilinear form in H is a map

q : Dom(q) × Dom(q) → C ,

where Dom(q) is a dense linear subspace of H, q is conjugate linear w.r.t. the
first argument and linear w.r.t. the second one. A sesquilinear form q is sym-
metric if q(ϕ,ψ) = q(ψ,ϕ). A symmetric form q is positive if q(ϕ,ϕ) � 0, ∀ϕ ∈
Dom(q) and semibounded if q(ϕ,ϕ) � c‖ϕ‖2, ∀ϕ ∈ Dom(q) , where c ∈ R and
‖ · ‖ is the norm in H, generated by the scalar product 〈·, ·〉H . A symmetric
operator T is semibounded if 〈ϕ, Tϕ〉 � c‖ϕ‖2, ∀ϕ ∈ Dom(T ), c ∈ R .

Let q be a semibounded sesquilinear form and q(ϕ,ϕ) � c‖ϕ‖2 . It is
closed if Dom(q) is closed w.r.t. the scalar product 〈ϕ,ψ〉+ := q(ϕ,ψ) + (1 −
c)〈ϕ,ψ〉H . In this case a linear subspace D ⊂ Dom(q) is an essential domain
of q if the closure of D w.r.t. 〈·, ·〉+ equals Dom(q). If q is not closed one can
complete H w.r.t. the scalar product 〈·, ·〉+ and obtain the Hilbert space H+.
Clearly the form q is extended up to the bounded sesquilinear form q̂ on H+.
Since ‖ϕ‖ � ‖ϕ‖+ for ϕ ∈ Dom(q), the inclusion Dom(q) → H is extended
up to the bounded map j : H+ → H with the norm less or equal 1. If j is
injective one can consider H+ as a linear subspace of H and the form q̂ as the
closed form in H with Dom(q̂) = H+ ⊂ H . In this case the form q is called
closable and the form q̂ with Dom(q̂) = H+ ⊂ H is called the closure of q .

For example, the form q(ϕ,ψ) := ϕ(0)ψ(0) , where ϕ,ψ ∈ C∞
0 (R, C) ⊂

H := L2 (R, dx) , is not closable since for it H+ = ((ψ, a) |ψ ∈ L2(R, dx), a ∈
C) , the corresponding map j acts as j(ψ, a) = ψ and is not injective ([144]
Sect. VIII.6, [145] Sect. X.3).

The following correspondence between operators and sesquilinear form in
H is a key instrument for studying the self-adjointness. Let T be a self-adjoint
operator in H. Due to the spectral theorem [144] there is an isomorphism

H ∼=
N⊕

k=1

L2 (R, dµk) (2.23)

of Hilbert spaces such that T corresponds to the operator of multiplication
by the coordinate x ∈ R in all spaces L2 (R, dµk). Here dµk are some positive
measures on R and N ∈ N ∪∞. The isomorphism (2.23) represents an every
element ψ ∈ H as the sequence (finite or infinite) ψk(x) ∈ L2 (R, dµk) , k =
1, . . . , N . Define the domain Domq(T )

Domq(T ) :=



(ψk)N
k=1 |

N∑

k=1

∞∫

−∞

|x| |ψk(x)|2dµk < ∞



 (2.24)

and the sesquilinear form qT

qT (ϕ,ψ) :=
N∑

k=1

∞∫

−∞

xϕk(x)ψk(x)dµk

for ϕ,ψ ∈ Dom(qT ) := Domq(T ) .
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The form qT is generated by the operator T . Evidently, Dom(T ) ⊂
Domq(T ), but the latter domain could be bigger than the former. Clearly,
if T is a semibounded self-adjoint operator, then the form qT is semibounded.
The constructions from proofs of the following two theorems from [144] and
[145] will be used below for Schrödinger operators.

Theorem 2.6. If T is a semibounded self-adjoint operator, then the form
qT is closed and every essential domain of T is an essential domain for qT .
Conversely, an every closed semibounded sesquilinear form q equals qT for a
unique self-adjoint operator T . Moreover if q(ϕ,ϕ) � c‖ϕ‖2 , then T � c id.

Proof. For scalar operators and corresponding sesquilinear forms, propor-
tional to the scalar product 〈·, ·〉H, both claims of the theorem are obvi-
ous. Therefore, without loss of generality, one can suppose that T � id and
q(·, ·) � 〈·, ·〉H .

Let T � id be a self-adjoint operator. Then 〈ϕ,ψ〉+ := 〈ϕ, Tψ〉H is a scalar
product on Dom(T ). Denote by H+ the closure of Dom(T ) w.r.t. 〈ϕ,ψ〉+ .

Let ı : Dom(T ) → H be the inclusion. Due to ‖ · ‖H � ‖ · ‖+ , the map ı
can be uniquely extended to the map ı̂ : H+ → H with a norm less or equal
to 1.

Show that ı̂ is injective. Let ı̂(ϕ) = 0, then there exists a sequence ϕi ∈
Dom(T ) such that ‖ϕ − ϕi‖+ → 0 and ‖ı̂(ϕi)‖H = ‖ϕi‖H → 0 , as i → ∞.
Therefore, it holds

‖ϕ‖2
+ = lim

i,j→∞
〈ϕi, ϕj〉+ = lim

j→∞
lim

i→∞
〈ϕi, Tϕj〉H = lim

j→∞
〈0, Tϕj〉H = 0

that implies ϕ = 0. Thus, the map ı̂ is injective and H+ ⊂ H .
If ψ ∈ Dom(T ), then in notations of (2.24)

N∑

k=1

∞∫

−∞

|x| |ψk(x)|2dµk = 〈ψ, Tψ〉 = 〈ψ,ψ〉+ .

Therefore, Domq(T ) is a closure of Dom(T ) in H w.r.t. the inner product
〈·, ·〉+. Since H+ ⊂ H, one gets Domq(T ) = H+ and qT is closed.

Since an every essential domain for T is dense in Dom(T ) w.r.t. the norm
‖ψ‖T := ‖Tψ‖ � ‖ψ‖+ , the first claim of the theorem is proved.

Conversely, let q(·, ·) � 〈·, ·〉H be a closed sesquilinear form. Then H+ :=
Dom(q) ⊂ H is a Hilbert space w.r.t. the scalar product 〈ϕ,ψ〉+ := q(ϕ,ψ).
Due to the Riesz lemma the identity

〈ϕ, (ψ)〉+ = 〈ϕ,ψ〉H, ∀ϕ ∈ H+

defines the linear operator  : H → H+ ⊂ H with a norm less or equal to 1.
This operator is injective, otherwise there exists ψ ∈ H+, ψ 
= 0 such that

0 = 〈ϕ, 0〉+ = 〈ϕ, (ψ)〉+ = 〈ϕ,ψ〉H, ∀ϕ ∈ H+ ,

which contradicts to the fact that H+ is dense in H. Also, the set Im  is dense
in H+ (and therefore in H), otherwise there exists ϕ ∈ H, ϕ 
= 0 such that
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0 = 〈ϕ, (ψ)〉+ = 〈ϕ,ψ〉H, ∀ψ ∈ H+ ,

which again contradicts to the fact that H+ is dense in H.
The identity

〈ϕ, (ψ)〉H = 〈(ψ), ϕ〉H = 〈(ψ), (ϕ)〉+ = 〈(ϕ), (ψ)〉+
= 〈(ϕ), ψ〉H , ∀ϕ,ψ ∈ H

shows that the operator  is symmetric and being bounded, it is self-adjoint.
Due to the functional calculus of self-adjoint operators and injectivity of ,
the operator T := −1

∣
∣
Im 

is self-adjoint with Dom(T ) = Im .
Also, it holds

〈ψ, (ψ)〉H = 〈(ψ), (ψ)〉+ � 0

and therefore 0 �  � id. This implies T � id.
Since

qT (ϕ,ψ) = 〈ϕ, Tψ〉H = 〈ϕ, (Tψ)〉+ = 〈ϕ,ψ〉+ = q(ϕ,ψ), ∀ϕ,ψ ∈ Dom(T ) ,

the closed forms qT and q coincide on the domain Dom(T ), which is dense
both in Dom(q) = H+ and Dom(qT ). Therefore, one gets qT = q.

Let now qT = qT ′ for another self-adjoint operator T ′. This yields

〈ϕ, (T ′ψ)〉+ = 〈ϕ, T ′ψ〉H = qT ′(ϕ,ψ) = 〈ϕ,ψ〉+ , ∀ϕ,ψ ∈ Dom(T ′)

and therefore
 ◦ T ′|Dom(T ′) = id|Dom(T ′) .

Thus, Dom(T ′) ⊂ Im  = Dom(T ) and T is a self-adjoint extension of T ′. Due
to Theorem 2.5 it holds T = T ′. ��

Theorem 2.7. Let T � c id be a semibounded symmetric operator and q(ϕ,
ψ) := 〈ϕ, Tψ〉H for ϕ,ψ ∈ Dom(H). Then q is a closable sesquilinear form
and its closure q̄ equals qTF

for a unique self-adjoint operator TF , which is
a semibounded extension of T . Also, it holds TF � c id and TF is the unique
self-adjoint extension of T with a domain contained in Dom(q̄).

Proof. Again, without loss of generality, one can consider a symmetric oper-
ator T � id. By the same proof as for the first claim of the previous theorem
one gets that H+ ⊂ H, where H+ is the closure of Dom(H) w.r.t. the scalar
product 〈·, ·〉+ := q(·, ·). This means that q is closable.

Let q̄ be the closure of q. Evidently, q̄(ϕ,ϕ) � c‖ϕ‖2. Due to the previous
theorem there exists a unique self-adjoint operator TF such that q̄ = qTF

and

q̄(ϕ,ψ) = 〈ϕ, TF ψ〉H, ∀ϕ,ψ ∈ Dom(TF ) ⊂ Dom(q̄) .

Also, this operator obeys the inequality TF � c id. Since q̄ is continuous in
H+, it holds

〈Tϕ, ψ〉H = q̄(ϕ,ψ) = 〈ϕ, TF ψ〉H, for ϕ ∈ Dom(T ), ∀ψ ∈ Dom(TF ) .
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Thus, one gets ϕ ∈ Dom(T ∗
F ) = Dom(TF ), Tϕ = T ∗

F ϕ = TF ϕ and the operator
TF is an extension of T .

Now let T̃ be a symmetric extension of T such that Dom(T̃ ) ⊂ Dom(q̄).
For ψ ∈ Dom(T̃ ), ϕ ∈ Dom(T ) it holds

q̄(ϕ,ψ) = 〈Tϕ, ψ〉H = 〈T̃ϕ, ψ〉H = 〈ϕ, T̃ψ〉H .

Since q̄ is continuous in H+, one gets

q̄(ϕ,ψ) = 〈ϕ, T̃ψ〉H =: q̃(ϕ,ψ), ∀ψ ∈ Dom(T̃ ) .

Therefore, q̄ is a closure of q̃ and the proof above, applied to the operator T̃
(instead of T ) gives T̃ ⊂ TF .

If additionally T̃ is self-adjoint, then Theorem 2.5 implies T̃ = T , which
completes the proof. ��

The operator TF from the latter theorem is called the Friedrichs extension
of T .

The general method for proving the self-adjointness or essential self-
adjointness of some symmetric operator is a representation of this operator
as a “perturbation” of a self-adjoint operator. Different meanings of the term
“perturbation” lead to different results. The most well-known examples are
below.

Theorem 2.8 (Kato-Rellich; [145], theorem X.12). Let A be a self-
adjoint and B be a symmetric operator such that

1. Dom(A) ⊂ Dom(B) ;
2. there are real constants a < 1 and b > 0 such that

‖Bψ‖ � a‖Aψ‖ + b‖ψ‖, ∀ψ ∈ Dom(A) .

Then A + B defined on Dom(A) is self-adjoint and essentially self-adjoint on
every essential domain of A.

Theorem 2.9 (KLMN; [145], theorem X.17). Let A be a self-adjoint
positive operator and q be a symmetric sesquilinear form on Domq(A) such
that

|q(ϕ,ϕ)| � a〈ϕ,Aϕ〉 + b〈ϕ,ϕ〉, ∀ϕ ∈ Dom(A)

for real constants a < 1 and b > 0. Then there exists a unique self-adjoint
operator B with Domq(B) = Domq(A) such that

〈ϕ,Bϕ〉 = 〈ϕ,Aϕ〉 + q(ϕ,ϕ), ∀ϕ ∈ Domq(B) .

Any essential domain of A is an essential domain for B.
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2.3.2 Self-Adjointness of Schrödinger Operators
on Riemannian Spaces

Let now Mn be a complete C∞ Riemannian manifold with a metric g and µ
be the measure on Mn, induced by g. This means that locally one has

dµ =
√

det gijdx1 · . . . · dxn, (2.25)

if locally g = gijdxidxj . Let � = �g be the Laplace–Beltrami operator on
Mn.

The most natural “unperturbed” part of a Schrödinger operator

−� + V (2.26)

with a real scalar potential V is the operator −�. It is essentially self-adjoint
with Dom(−�) = C∞

c (Mn, C) ([188], theorem 2.4). Note that the operator �
naturally acts not only on functions, but also on differential forms and tensor
fields.

In Euclidean case the approach to a proof of the self-adjointness of the op-
erator (2.26) as the perturbation of −� was demonstrated in [145] on different
physical examples (see also the review in [175]). The review of different re-
sults concerning the self-adjointness of Schrödinger operators on Riemannian
manifolds can be found in [30]. Here we formulate the simplified result from
[43], sufficient for most concrete spaces and potentials, considered below.

Denote by H0 the operator (2.26) defined on the space C∞
c (Mn, C) of

smooth functions with a compact support. This operator is evidently symmet-
ric in the Hilbert space L2(Mn, dµ) and therefore closable. Let W k,l

loc (M
n, dµ)

be a linear subspace of the space L2(Mn, dµ) consisting of complex-valued
functions on Mn, whose partial derivatives (in the sense of distributions) up
to the order k are in L2

loc(M
n, dµ).

Theorem 2.10 ([43]). Let V ∈ Lp
loc(M

n, dµ), n � 2, where p = 2 for n =
2, 3, p > n/2 for n � 4 and V � −c outside of a compact set, for some
constant c > 0. Then

1. the operator H0 is essentially self-adjoint;
2. the operator H0 is self-adjoint with

Dom(H0) =
(

u ∈ W 2,2
loc (Mn, dµ) ∩ L2(Mn, dµ)

∣
∣
∣ (−�u + V u)dist

∈ L2(Mn, dµ)
)

, (2.27)

where subscript “dist” means that a differential operator is understood in
the sense of distributions,

3. for an element u ∈ Dom(H0) the following inclusions are valid:

|∇u| ∈ L2(Mn, dµ), |V |1/2u ∈ L2(Mn, dµ) .

Conditions on p were weaken in [121] for some special type of Riemannian
manifolds. The exponential geodesic map expx : TxM �→ M is defined by
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the formula expx X = γ(1), where γ(s) is the geodesic, starting at the point
x ∈ M with the initial speed γ′(0) = X ∈ TxM and s being its arc length. The
exponential geodesic map is a diffeomorphism of a ball in TxM of a radius r
with the center 0 onto a neighborhood Ux,r of x in M . Let rx be the supremum
of possible radii (may be ∞) of such balls in TxM and rinj := infx∈M rx.

Definition 2.1 ([35, 173]). A Riemannian manifold M is called a manifold
of a bounded geometry if the following conditions are satisfied

1. rinj > 0 ,
2. |∇kR| � Ck, k = 0, 1, 2, . . . ,

where ∇ is the Levi-Civita connection, R is the curvature tensor, | · | is the
norm in the space of tensors, generated by the Riemannian metric in TxM ,
and Ck are real constants.

Note that the first condition implies the completeness of M . Evidently,
every homogeneous or compact Riemannian manifold is a manifold of a
bounded geometry. The following theorem is a result from [121], restricted
for the scalar case.

Theorem 2.11. Let Mn be a manifold of a bounded geometry and the poten-
tial V can be represented in the form V = V1 +V2, where real-valued functions
V1, V2 are as follows: 0 � V1 ∈ L1

loc(M
n, dµ), 0 � V2 ∈ Lp(Mn, dµ) for

p = n/2 if n � 3, for p > 1 if n = 2 and for p = 1 if n = 1.
Then the operator H = −� +V is self-adjoint with the domain:

Dom(H) =
(

u ∈ W 1,2(Mn, dµ)
∣
∣
∫

M

V1|u|2dµ < +∞, Hu ∈ L2(Mn, dµ)
)

,

(2.28)
where Hu is understood in the sense of distributions. Also, it holds V u ∈
L1

loc(M
n, dµ) for u ∈ Dom(H).

If the potential V is not in L1
loc(M

n, dµ), then theorems 2.10 and 2.11 are
not applicable. If instead V is bounded from below, one can try to restrict
the Schrödinger operator onto some submanifold M ′ of Mn such that V |M ′ ∈
L1

loc(M
′, dµ) and construct the Friedrichs self-adjoin extension of − � +V

from the initial domain C∞
c (M ′, C). This procedure is physically motivated

for instance in the case when V → +∞ near the boundary of M ′ and therefore
wave functions should vanish near this boundary.

Let us turn to the accurate mathematical description. Let M ′ be an open
connected submanifold of Mn of dimension n. We do not suppose that M ′ is
complete w.r.t. the Riemannian structure induced by the Riemannian struc-
ture on Mn. Let V � C ∈ R be a real-valued function from L1

loc(M
′, dµ) and

H0 = −�+V be a Schrödinger operator with the domain C∞
c (M ′, C). With-

out loss of generality we suppose that C = 1. Let HF � id be the Friedrichs
extension of H0, constructed in Theorem 2.7 in the abstract case. Now one
needs a precise description of Dom(HF ).

Denote by grad f the gradient of a function f on Mn, defined in local
coordinates by the expression
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gij ∂f

∂xj

∂

∂xi
.

Evidently, the closure of the sesquilinear form qH0 , associated with the oper-
ator H0, is

qHF
(ϕ,ψ) =

∫

M ′
(g(grad ϕ̄, grad ψ) + V ϕ̄ψ) dµ (2.29)

with Dom(qHF
) ⊂ L2(M ′, dµ) being a closure of C∞

c (M ′, C) w.r.t. the inner
product (2.29).

According to the construction in the proof of Theorem 2.6 the operator
HF is defined by the identity

∫

M ′
(g(grad ϕ̄, grad ψ) + V ϕ̄ψ) dµ

=
∫

M ′
ϕ̄HF ψdµ, ∀ϕ ∈ Dom(qHF

), ψ ∈ Dom(HF ) .

Thus, one gets

HF ψ = (−� ψ + V ψ)dist , ψ ∈ Dom(HF ) . (2.30)

Let − �F + id be the Friedrichs extension (evidently nonnegative) of the
operator

(−� + id)|C∞
c (M ′,C)

and Dom(q−�F + id) be the domain of associated sesquilinear form. It is the
closure of C∞

c (M ′, C) w.r.t. the inner product

q−�F + id(ϕ,ψ) =
∫

M ′
(g(grad ϕ̄, grad ψ) + ϕ̄ψ) dµ . (2.31)

Let also Dom(qV ) be the closure of C∞
c (M ′, C) w.r.t. the inner product

qV (ϕ,ψ) =
∫

M ′
ϕ̄V ψdµ .

The following theorem is the direct generalization of theorem X.32 from
[145] for Riemannian manifolds. For M ′ = Hn(R) it was announced in [159].

Theorem 2.12. The domain of the operator HF is
(
ψ ∈ Dom(q−�F + id) | V ψ ∈ L1

loc(M
′, dµ); (−� ψ + V ψ)dist ∈ L2(M ′, dµ)

)

(2.32)
and HF acts by formula (2.30).

For the proof of this theorem one needs some preliminary propositions. The
first proposition is the generalization of the Kato inequality for Riemannian
spaces (see theorem 5.7 from [30]), restricted onto the scalar case (cf. theorem
X.27 from [145]).



46 2 Differential Operators on Smooth Manifolds

Proposition 2.6. Let u ∈ L1
loc(M

′, dµ) and (�u)dist ∈ L1
loc(M

′, dµ), then it
holds

(�|u|)dist � Re ((sign u)(�u)dist) , (2.33)

where

(sign u)(x) :=
{

ū(x)/|u(x)|, if u(x) 
= 0
0, otherwise .

Here the inequality (2.33) is understood in the sense of distributions.

The second preliminary proposition is the consequence of theorem 2.2
from [122]. Let a set L2(M ′, dµ)+ consists of all real-valued functions from
L2(M ′, dµ) that are positive almost everywhere w.r.t. the measure µ. Simi-
larly C∞

c (M ′)+ denotes the set of all nonnegative functions from C∞
c (M ′).

Proposition 2.7. For any function u from Dom(q−�F + id) ∩ L2(M ′, dµ)+

there exists a sequence uk ∈ C∞
c (M ′)+ such that ‖uk − u‖−�F + id → 0 as

k → ∞, where ‖·‖−�F + id is the norm, associated with the positive sesquilinear
form (2.31).

The third preliminary proposition is the particular case of Lemma 2.12
from [122].

Proposition 2.8. The bounded operator (−�F + id)−1 maps the set L2(M ′,
dµ)+ into itself.

Now one can give a proof of Theorem 2.12. Until inequality (2.36) the
following proof repeats mutatis mutandis the proof of theorem X.32 from
[145]. The last part of the proof follows ideas from [122].

Proof of theorem 2.12. Let H̃ be an operator with Dom(H̃) given by (2.32)
and

H̃ψ := (−� ψ + V ψ)dist , ψ ∈ Dom(H̃) .

Firstly, we will show that H̃ is an extension of HF . Since −�F and V are
nonnegative operators, it holds

Dom(HF ) ⊂ Dom(qHF
) = Dom(q−�F + id) ∩ Dom(qV ).

Let ϕ ∈ Dom(HF ), then V 1/2ϕ ∈ L2(M ′, dµ). Since also V 1/2 ∈ L2
loc(M

′, dµ),
the Cauchy inequality implies

V ϕ = V 1/2(V 1/2ϕ) ∈ L1
loc(M

′, dµ) . (2.34)

Thus, due to (2.30) one gets ϕ ∈ Dom(H̃), Dom(HF ) ⊂ Dom(H̃) and

H̃
∣
∣
∣
Dom(HF )

= HF . (2.35)

Conversely, let ϕ ∈ Dom(H̃). Since HF is a self-adjoint operator and
HF � id, there is a function ψ ∈ Dom(HF ) such that H̃ϕ = HF ψ. Due to
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(2.35) it holds H̃η = 0, where η := ϕ − ψ ∈ Dom(H̃) ⊂ Dom(q−�F + id). Due
to (2.34) this means that

(−� η)dist = H̃η − V η = −V η ∈ L1
loc(M

′, dµ)

and Proposition 2.6 implies

(�|η|)dist � Re ((sign η)V η) = V |η| � |η| . (2.36)

This yields

〈(−� +1)w, |η|〉L2(M ′,dµ) � 0, ∀w ∈ C∞
c (M ′)+ . (2.37)

Due to Proposition 2.8 the function f := (− �F + id)−1|η| belongs to
L2(M ′, dµ)+ ∩ Dom(−�F ). Proposition 2.7 implies therefore the existence
of a sequence fk ∈ C∞

c (M ′)+ such that

lim
k→∞

q−�F + id(fk, |η|) = q−�F + id(f, |η|)

= q−�F + id((−�F + id)−1|η|, |η|) = ‖η‖2
L2(M ′,dµ) .

From (2.37) one gets q−�F + id(fk, |η|) � 0 that gives ‖η‖2
L2(M ′,dµ) � 0, i.e.,

η = 0. Thus, it holds ϕ = ψ and Dom(H̃) ⊂ Dom(HF ) that due to (2.35) com-
pletes the proof. �

2.4 General Scheme of Quantum-Mechanical Reduction

Let M be a Riemannian manifold with an action of an isometry group G (not
necessarily full) on it. We assume that G-orbits in M of a maximal dimension
� are isomorphic to each other, their union is an open dense submanifold M ′,
the set M\M ′ has zero measure, and it holds M ′ = W × O, where O is a
G-orbit of a maximal dimension and W is a submanifold of M ′ transversal
to all G-orbits of the dimension �. This situation is a typical one [31] and we
have the isomorphism of measurable sets (M,µ) ∼= (W,ν)× (O, µG), where µ
is the G-invariant measure on the manifold M , generated by its metric, ν is
some measure on W , and µG is a G-invariant measure on O. This implies the
isomorphisms of functional spaces (see for example theorem II.10 in [144]):

H := L2(M,dµ) = L2(W ×O, dν ⊗ dµG) = L2(W,dν)⊗L2(O, dµG) . (2.38)

Under these assumptions, a G-invariant differential operator D on M ′ admits
an explicitly invariant decomposition of the form:

D = DT +
∑

(i)

D(i) ◦ X̃i1 ◦ · · · ◦ X̃ir
≡ DT +

∑

(i)

D(i) ◦ �(i) , (2.39)

where as above X̃i is a differential operator of the first order, corresponding
to the action of the one parametric subgroup exp(tXi), Xi ∈ g, of the group
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G on the space M ′; DT and D(i) are transversal operators with respect to the
submanifold W ; here DT is called the transversal part of D (see theorem 3.4
from chapter II, [66]). Operators �(i) are invariant ones on G-orbits in the
space M ′. According to Sect. 2.1 such operators can be naturally expressed in
terms of the Lie algebra g of the group G. Throughout the book we assume
M and G to be connected. Expression (2.39) of invariant differential oper-
ators corresponds to a general approach to invariant differential geometrical
objects on homogeneous spaces. These objects have the simplest form in the
basis of Killing vector fields [17, 92]. For invariant metrics this approach was
developed in [7, 9] for applications to infinite-dimensional groups. Note that
the representation (2.39) depends on a choice of a submanifold W , transversal
to G-orbits.

The group G naturally acts on the space L2(O, dµG) by left-shifts. Let

L2(O, dµG) = ⊕jH′
j

be an expansion of the space L2(O, dµG) such that H′
j is the sum of all ir-

reducible G-representations from L2(O, dµG) of a fixed irreducible type. Ob-
viously, different G-representations H′

j have no isomorphic irreducible sum-
mands. Since operators �(i) commute with G-shifts, they can not transpose
spaces H′

j due to the Schur lemma [88, 212]. Thus, one gets the expansion

H = L2(W,dν) ⊗
(
⊕jH′

j

)
= ⊕j

(
L2(W,dν) ⊗H′

j

)
.

of the space H into the sum of D-invariant subspaces Hj := L2(W,dν)⊗H′
j .

6

Note that for a compact group G spaces H′
j are finite-dimensional.

If the operator D = H is a Hamiltonian of some quantum mechanical sys-
tem on a Riemannian manifold M then this construction gives the reduction
of a G-invariant quantum mechanical system to a set of its subsystems. This
method was described in papers [100, 190, 210] without mentioning the ex-
pansion (2.39). On the other hand, it seems to be difficult to manage without
the expansion (2.39) while reducing the quantum mechanical system, because
representation theory for the group G gives only the formulae for the action of
operators �(i) in the space H′

i. Without (2.39), the calculation of the action
of H in spaces Hj requires cumbersome computations.

At the same time, expansion (2.39) gives some information on the com-
plexity of reduced subsystems even in the absence of the detailed information
about irreducible representations of the group G in the space L2(O, dµG).
For example, if all operators �(i) in (2.39) commute, they have only common
eigenfunctions and the spectral problem for the Hamiltonian H is reduced to a
set of spectral problems for some scalar differential operators on the manifold
W .

The simplest example for this construction is a one-body Hamiltonian
with a central potential in Euclidean space En. Here W = R+,O = Sn−1 and
expansion (2.39) has the form

6 One should keep in mind that domains of D in these subspaces are some dense
subsets.
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D = He = − 1
2mρn−1

∂

∂ρ

(
ρn−1 ∂

∂ρ

)
− 1

2mρ2
�s + V (ρ) ,

where ρ is the distance from the center of a potential and �s is the Laplace-
Beltrami operator on Sn−1 (everywhere we put � = 1). The situation is similar
for a one-body Hamiltonian with a central potential in constant curvature
spaces. It will be studied in Sect. 6.3.

Consider a more difficult two-body problem on a Riemannian space M̃
with a Hamiltonian

H = − 1
2m1

�1 −
1

2m2
�2 + V =: H0 + V (2.40)

Here H0 is the free two-particle Hamiltonian, m1,m2 are particle masses,
�i, i = 1, 2 is the Laplace-Beltrami operator on the ith factor of the config-
uration space M = M̃ × M̃ for this system and V is an interaction potential
depending only on a distance between particles. Let G be the identity com-
ponent of an isometry group for the space M̃ . The group G acts naturally on
the space M̃ × M̃ as

g : (q1, q2) → (gq1, gq2), g ∈ G, (q1, q2) ∈ Q × Q .

The codimension of G-orbits in M in this case is one or greater, since the group
G conserves a distance between two points of the space M̃ . In other words,
it holds dimW � 1 for a submanifold W ⊂ M , transversal to G-orbits in M .
In Chap. 5 we shall consider the case of two-point homogeneous Riemannian
spaces M̃ = Q for which dimW = 1 and find for H the corresponding expan-
sion (2.39). The main difference of this expansion from the one-particle case
is the noncommutativity of an algebra generated by operators �(i).
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Algebras of Invariant Differential Operators
on Unit Sphere Bundles Over Two-Point
Homogeneous Riemannian Spaces

In this chapter we study the algebra DiffI(QS) of invariant differential opera-
tors on the unit sphere bundle QS over a two-point homogeneous Riemannian
space Q. Namely we construct a system of generators and relations for these
algebras. These generators will appear in Chap. 5 in explicitly invariant ex-
pressions of two-body Hamiltonian operators H on the space Q. On the other
hand, the center of the algebra DiffI(QS) commutes with H, i.e., it consists
of integrals for the quantum two-body problem on Q.

In Sect. 3.1 we derive some generators and relations for the algebra
DiffI(QS) corresponding to an arbitrary two-point homogeneous Riemannian
space Q using general information from Sect. 1.2. However, this information is
insufficient for deriving all such generators and relations. The further study of
generators and relations for DiffI(QS) is based upon models of compact two-
point homogeneous Riemannian spaces, described in Sect. 1.3. The description
of the algebra DiffI(QS) for noncompact two-point homogeneous Riemannian
spaces is obtained using the transformation from Proposition 1.5.

We calculate also some central elements of algebras DiffI(QS), which are
used in Chap. 7. The result of Sect. 3.6 will not be used later, but it seems to be
interesting from the differential geometry point of view. This chapter is based
upon the authors paper [168], but also contains some additional information
concerning the centers of algebras DiffI(QS) and the complete form of relation
(3.13).

3.1 Invariant Differential Operators on QS

For an arbitrary Riemannian space M denote by MS the bundle of unit spheres
(in tangent spaces TxM, x ∈ M) over M . Here we shall specify the construc-
tion from Sect. 2.1 for the space QS, where Q is a two-point homogeneous
compact Riemannian space, using Proposition 1.2. In this section we use no-
tations from Sects. 1.2 and 2.1.

Let G be the identity component of the isometry group for Q and K
be its stationary subgroup, corresponding to the point x0 ∈ Q. The group G
naturally acts on the space QS and this action is transitive due to Theorem 1.1.

A.V. Shchepetilov: Calculus and Mechanics on Two-Point Homogeneous Riemannian Spaces,
Lect. Notes Phys. 707, 51–86 (2006)
DOI 10.1007/3-540-35386-0 3 c© Springer-Verlag Berlin Heidelberg 2006



52 3 Algebras of Invariant Differential Operators on Unit Sphere Bundles

In particular K acts transitively on the unit sphere Sx0 ⊂ Tx0Q. Identify the
space p from Proposition 1.2 with the space Tx0Q. After this identification
the action of K on Tx0Q becomes the adjoint action AdK on p. Let K0 be
the subgroup of K, corresponding to the subalgebra k0 ⊂ k. Due to relations
(1.3) and (1.6) the group K0 is the stationary subgroup of the group G,

corresponding to the point y := (x0,Λ′) ∈ QS, where Λ′ :=
1
R

Λ. Using
models of compact two-point homogeneous Riemannian spaces we shall see
below that the group K0 is connected.

Let p̃ := a⊕pλ ⊕p2λ ⊕ kλ ⊕ k2λ. Due to [k0, p̃] ⊂ p̃ the expansion g = p̃⊕ k0

is reductive. One has TyQS = Tx0Q ⊕ TΛ′Sx0 . Due to Proposition 1.2 one
gets Λ′⊥ (pλ ⊕ p2λ) and [fλ,i,Λ′] = −(2R)−1eλ,i, i = 1, . . . , q1, [f2λ,j ,Λ′] =
−R−1e2λ,j , j = 1, . . . , q2. Therefore, the space kλ ⊕ k2λ is identified through
the K-action on Tx0Q with the space TΛ′Sx0 and the K0-action on the space
TyQS � p̃ = a ⊕ pλ ⊕ p2λ ⊕ kλ ⊕ k2λ is again adjoint.

From Proposition 1.2 we see that AdK0 conserves all summands in the last
expansion. On the other hand, the K0-action on TΛ′Sx0 is the differential of
K0-action on (Λ′)⊥ ⊂ Tx0Q. Since the last action is linear, one sees that the
AdK0-action in pλ is equivalent to it’s action in kλ and the AdK0-action in
p2λ is equivalent to it’s action in k2λ. Let χλ : kλ → pλ, χ2λ : k2λ → p2λ be
isomorphisms of linear spaces such that AdK0 |pλ

◦ χλ = χλ ◦ AdK0 |kλ
and

AdK0 |p2λ
◦ χ2λ = χ2λ ◦ AdK0 |k2λ

.
After the substitution p → p̃, k → k0 one can apply the construction from

Sect. 2.1 for calculating generators and relations for the algebra

U(g)K0/(U(g)k0)K0 ∼= DiffG(QS) .

Let gi ∈ S(p̃) be independent invariant elements of the AdK0-action in
S(p̃) which generate S(p̃)K0 . Then elements η ◦ λ∗(gi) generate the algebra
DiffG(QS).

From now in the present chapter we adopt for brevity the following:

Convension 3.1. Identify isomorphic algebras U(g)K0/(U(g)k0)K0 and
DiffG(QS). Consider elements λ(gi) ∈ U(g)K0 modulo (U(g)k0)K0 as elements
of DiffG(QS). Instead of g ≡ g′ mod (U(g)k0)K0 sometimes we shall simply
write g = g′. Since the group G is uniquely defined by QS, we shall write
DiffI(QS) instead of DiffG(QS) for the concrete QS.

The element Λ ∈ a is invariant w.r.t. the AdK0-action in S(p̃), since
[k0, a] = 0 and K0 is connected. Also, the AdK0-action is orthogonal w.r.t.
the Killing form, which is proportional to the scalar product 〈·, ·〉, so the
AdK0-action conserves the restrictions of 〈·, ·〉 onto spaces pλ, p2λ, kλ, k2λ.
Similarly, the AdK0-action conserves functions 〈χλX1, Y1〉, X1 ∈ kλ, Y1 ∈ pλ

and 〈χ2λX2, Y2〉, X2 ∈ k2λ, Y2 ∈ p2λ. All these functions are invariant ele-
ments of Ad∗

K0
-action in S (p∗λ ⊕ p∗2λ ⊕ k∗λ ⊕ k∗2λ).

Let define linear maps χλ : kλ �→ pλ and χ2λ : k2λ �→ p2λ by the following
formulas

χλX = 2[Λ,X], X ∈ kλ, χ2λY = [Λ, Y ], Y ∈ k2λ . (3.1)

Indeed, from (3.1) and the identity Adk Λ = Λ, ∀k ∈ K0 one gets: Adk ◦χλX =
2[Λ,Adk X] = χλ ◦ Adk X, X ∈ kλ and Adk ◦χ2λY = [Λ,Adk Y ] = χ2λ ◦
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Adk Y, Y ∈ k2λ . It is clear that χλfλ,i = eλ,i, i = 1, . . . , q1 and χ2λf2λ,j =
e2λ,j , j = 1, . . . , q2 .

Proposition 1.2 implies that the bases
{

1
R

eλ,i

}q1

i=1

,

{
1
R

fλ,i

}q1

i=1

,

{
1
R

e2λ,j

}q2

j=1

,

{
1
R

f2λ,j

}q2

j=1

in spaces pλ, kλ, p2λ, k2λ are orthonormal, so due to Lemma 2.4 one has the
following generators of DiffG(QS):

D0 = Λ, D1 =
q1∑

i=1

e2
λ,i,D2 =

q1∑

i=1

f2
λ,i, D3 =

1
2

q1∑

i=1

{eλ,i, fλ,i} ,

D4 =
q2∑

j=1

e2
2λ,j ,D5 =

q2∑

j=1

f2
2λ,j ,D6 =

1
2

q2∑

j=1

{e2λ,j , f2λ,j} ,

(3.2)

where {·, ·} means anticommutator. From (1.6) one easily gets:

[D0,D1] = −D3, [D0,D2] = D3, [D0,D3] =
1
2
(D1 − D2) ,

[D0,D4] = −2D6, [D0,D5] = 2D6 , [D0,D6] = D4 − D5 .

In order to find full system of generators and relations in DiffG(QS) we
need more detailed information about the AdK0-action in p̃ and commutators
in g. This information will be extracted in the following sections from the
models of two-point homogeneous compact Riemannian spaces.

It is easily seen that every automorphism of Lie algebra g, conserving its
subalgebra k0, generates an automorphism of DiffG(QS). From relations (1.3)
one obtains that the map σ : g → g, σ|

k
= id, σ|

p
= − id is the automor-

phism of g. It generates the automorphism of DiffG(QS): D0 → −D0, D1 →
D1, D2 → D2, D3 → −D3, D4 → D4, D5 → D5, D6 → −D6. We shall
denote it by the same symbol σ.

Besides, the adΛ-action generates the one-parametric group ζα of auto-
morphisms for the algebra DiffG(QS). From (1.6) one obtains ζα(Λ) = Λ and

ζα(eλ,i) = cos(α/2)eλ,i − sin(α/2)fλ,i ,

ζα(fλ,i) = sin(α/2)eλ,i + cos(α/2)fλ,i, i = 1, . . . , q1 ,

ζα(e2λ,j) = cos(α)e2λ,j − sin(α)f2λ,j ,

ζα(f2λ,i) = sin(α)e2λ,j + cos(α)f2λ,j , j = 1, . . . , q2 .

Therefore, it holds

ζα(D0) = D0, ζα(D1) = cos2(α/2)D1 + sin2(α/2)D2 − sin(α)D3 ,

ζα(D2) = sin2(α/2)D1 + cos2(α/2)D2 + sinαD3 ,

ζα(D3) =
1
2

sin(α)(D1 − D2) + cos(α)D3 ,

ζα(D4) = cos2(α)D4 + sin2(α)D5 − sin(2α)D6 ,

ζα(D5) = sin2(α)D4 + cos2(α)D5 + sin(2α)D6 ,

ζα(D6) =
1
2

sin(2α)(D4 − D5) + cos(2α)D6 .



54 3 Algebras of Invariant Differential Operators on Unit Sphere Bundles

In particular ζπ(D1) = D2, ζπ(D2) = D1, ζπ(D3) = −D3, ζπ(Di) = Di, i =
0, 4, 5, 6 .

Due to the orthonormality of the base

1
R

Λ,
1
R

eλ,i,
1
R

fλ,i,
1
R

e2λ,j ,
1
R

f2λ,j , i = 1, . . . , q1, j = 1, . . . , q2

in the space p̃ the operator C1 = D2
0 + D1 + D2 + D4 + D5 is the Casimir one

and lies in the centre of the algebra DiffG(QS) in accordance with corollary
2.2.

For future study integrals of the classical two-body problem on two-point
homogeneous spaces in Chap. 7 one needs the information on the center of the
algebra DiffG(QS). The full description of ZDiffG(QS) seems to be a difficult
problem. The general theory (see corollary 2.2) guarantees only that the set
η ◦ λ∗(S(g)G) lies in ZDiffG(QS). It is not known if the center of DiffG(QS)
is exhausted by η ◦ λ∗(S(g)G) or not. Note that in some examples below the
map η ◦ λ∗|S(g)G is not injective.

In order to find generators of η ◦ λ∗(S(g)G) one should firstly describe
independent invariant elements of AdG-action in S(g). Their numbers and
degrees for groups under consideration are given by Proposition 1.5. But their
explicit form (especially for high degrees) seems to be absent in the litera-
ture. Secondly, it requires cumbersome calculations to express these invariant
elements through chosen independent AdK0-invariant elements in S(p̃) mod-
ulo (U(g)k0)K0 . Below we shall find some elements from ZDiffG(QS) of lower
degrees by direct calculations and prove that they form a full systems of
generators in algebras η ◦λ∗(S(g)G) for spaces Pn(C)S,Pn(R)S,Sn

S and their
noncompact analogous.

Let π3 : QS → Q be the canonical projection and π̃3 is the dual map,
acting as f �→ f ◦ π1, where f is a function on Q. Due to the identification
p � Tx0Q it is clear that the operator (D2

0 + D1 + D2) ◦ π̃3 is the Laplace-
Beltrami operator on Q.

3.2 Algebras DiffI(P
n(H)S) and DiffI(H

n(H)S)

Here we use notations from Sect. 1.3.1.

3.2.1 Generators of Algebras DiffI(Pn(H)S) and DiffI(Hn(H)S)

Consider now the total space of unit spheres bundle Pn(H)S over the space
Pn(H). Let (z, ζ) be a general point of the space Pn(H)S, where z ∈
Pn(H), ζ ∈ TzPn(H). Due to the isomorphism P1(H) ∼= S4 we assume here
n � 2.

Suppose that z̃0 = (1, 0, . . . , 0) ∈ H
n+1 and an element ξ0 ∈ Tz̃0H

n+1 ∼=
H

n+1 has coordinates (0, 1, 0, . . . , 0). Put z0 = πz̃0, ζ0 = π∗ξ0 ∈ Tz0P
n(H).

The stationary subgroup K0 of the group UH(n+1), corresponding to the
point (z0, ζ0), is generated by the group K1 = UH(n − 1), acting onto the
last (n − 1) homogeneous coordinates, and by the group K2 = UH(1), acting
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by the left multiplication of all homogeneous coordinates by quaternions with
the unit norm. In particular the group K0 is connected. Its (2n2 − 3n + 4)-
dimensional Lie algebra k0 (corresponding to Proposition 1.2) is generated by
elements (1.11) with 3 � k � j � n + 1 and also by the elements

n+1∑

k=1

Υkk,

n+1∑

k=1

Ωkk,

n+1∑

k=1

Θkk .

Suppose that the complimentary subspace p̃ ⊂ g = uH(n+1) to the subalgebra
k0 ⊂ g is spanned by elements

Ψ1k, Υ1k, Ω1k, Θ1k, 2 � k � n + 1, Ψ2k, Υ2k, Ω2k, Θ2k, 3 � k � n + 1 ,

Υ∗ =
i
2

(E11 − E22) , Ω∗ =
j
2

(E11 − E22) , Θ∗ =
k
2

(E11 − E22) .

(3.3)

Taking into account relations (1.12) it is easily obtained that the expansion
uH(n + 1) = p̃ ⊕ k0 is reductive, i.e., [p̃, k0] ⊂ p̃.

It is readily seen from (1.12) that setting:

Λ = −Ψ12, eλ,k−2 = Ψ1k, eλ,n−3+k = Υ1k,

eλ,2n−4+k = Ω1k, eλ,3n−5+k = Θ1k ,

fλ,k−2 = −Ψ2k, fλ,n−3+k = −Υ2k, fλ,2n−4+k = −Ω2k,

fλ,3n−5+k = −Θ2k, k = 3, . . . , n + 1, e2λ,1 = Υ12 ,

e2λ,2 = Ω12, e2λ,3 = Θ12, f2λ,1 = Υ∗, f2λ,2 = Ω∗, f2λ,3 = Θ∗ ,

(3.4)

one gets the base from Proposition 1.2 for q1 = 4n − 4, q2 = 3.
Now we shall find the full set of independent AdK0-invariant elements in

S(p̃) . According to Sect. 3.1, the expansion p̃ = a ⊕ kλ ⊕ k2λ ⊕ pλ ⊕ p2λ is
invariant w.r.t. the AdK0-action. In the space a the K0-action is trivial that
gives the invariant element D0 = Λ ∈ λ

(
S(p̃)K0

)
, already found in Sect. 3.1.

From formulas (3.4) one sees that the space pλ
∼= H

n−1 consists of matrices
of the form

(
0 −a∗

a 0

)
≡










0 0 −ā1 . . . −ān−1

0 0 0 . . . 0
a1 0 0 . . . 0
...

...
...

. . .
...

an−1 0 0 . . . 0










, a1, . . . , an−1 ∈ H .

Likewise, the space kλ
∼= H

n−1 consists of matrices of the form




0 0 0
0 0 −b∗

0 b 0



 ≡










0 0 0 . . . 0
0 0 −b̄1 . . . −b̄n−1

0 b1 0 . . . 0
...

...
...

. . .
...

0 bn−1 0 . . . 0










, b1, . . . , bn−1 ∈ H .
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Due to the formula
(

1 0
0 U

)(
0 −a∗

a 0

)(
1 0
0 U∗

)
=
(

0 −(Ua)∗

Ua 0

)
, U ∈ UH(n−1), a ∈ H

n−1

the action of the group K1 in the space pλ is equivalent to the tautological
action of the group UH(n − 1) in the space H

n−1 : a → Ua. In the space kλ

the action of K1 is similar: b → Ub.
The tautological action of the group UH(n−1) in the space H

n−1 has only
one independent real invariant 〈z, z〉, z ∈ H

n−1 and the diagonal action of
UH(n−1) in the space pλ ⊕ kλ

∼= H
n−1⊕H

n−1 has six (independent iff n � 3)
real invariants:

〈z1, z1〉 ∈ R, 〈z2, z2〉 ∈ R, 〈z1, z2〉 ∈ H ∼= R
4, z1, z2 ∈ H

n−1 . (3.5)

Due to Lemma 2.4 there are corresponding elements from λ
(
S(p̃)K1

)
:

D1 =
n+1∑

k=3

(
Ψ2

1k + Υ2
1k + Ω2

1k + Θ2
1k

)
, D2 =

n+1∑

k=3

(
Ψ2

2k + Υ2
2k + Ω2

2k + Θ2
2k

)
,

D3 = −1
2

n+1∑

k=3

({Ψ1k,Ψ2k} + {Υ1k,Υ2k} + {Ω1k,Ω2k} + {Θ1k,Θ2k}) ,

�1 =
1
2

n+1∑

k=3

(−{Ψ1k,Υ2k} + {Ψ2k,Υ1k} + {Θ1k,Ω2k} − {Θ2k,Ω1k}) , (3.6)

�2 =
1
2

n+1∑

k=3

(−{Ψ1k,Ω2k} + {Ψ2k,Ω1k} + {Υ1k,Θ2k} − {Υ2k,Θ1k}) ,

�3 =
1
2

n+1∑

k=3

(−{Ψ1k,Θ2k} + {Ψ2k,Θ1k} + {Ω1k,Υ2k} − {Ω2k,Υ1k}) .

For n = 2 there is the unique independent relation between invariants
(3.5):

|〈z1, z2〉|2 = |z̄1z2|2 = |z1|2 |z2|2 = 〈z1, z1〉〈z2, z2〉, z1 = z1, z2 = z2 ∈ H .
(3.7)

If we write this identity in coordinates, then we will obtain the well-known
Euler identity, which is the key item in the proof of the Lagrange theorem
from number theory: every natural number can be represented as a sum of
four squares.

The elements D1,D2,D3, already found in Sect. 3.1, are invariant w.r.t.
the action of the whole group K0, therefore they correspond to operators of the
second order from DiffI(Pn(H)S). The elements �1,�2,�3 are not invariant
w.r.t. the action of the group K2

∼= UH(1). Obviously, the K2-action on the
linear hull of elements �1,�2,�3 is equivalent to the well-known action of the
group SO(3) ∼= UH(1)/(1,−1) in the space H

′ of pure imaginary quaternions:

x → qxq̄, x ∈ H
′, q ∈ UH(1) , (3.8)

after the identification �1 ↔ i, �1 ↔ j, �3 ↔ k.
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The AdK2-action on 3-dimensional spaces p2λ, k2λ coincides with (3.8)
after the identification Υ12,Υ∗ ↔ i; Ω12,Ω∗ ↔ j; Θ12,Θ∗ ↔ k and the AdK1 -
action in these spaces is trivial. Thus, we are to find invariants of the diagonal
action of the group SO(3) in the space R

3 ⊕ R
3 ⊕ R

3. It is well known [207]
that there are 6 = 9 − 3 such independent invariants:

〈x,x〉, 〈y,y〉, 〈z, z〉, 〈x,y〉, 〈x, z〉, 〈z,y〉, x,y, z ∈ R
3

and the invariant 〈x,y, z〉 ≡ 〈x,y × z〉 algebraically connected with the first
six:

〈x,y, z〉2 = x2y2z2 + 2〈x,y〉〈x, z〉〈y, z〉 − x2〈y, z〉2

− y2〈x, z〉2 − z2〈x,y〉2,
(3.9)

where y×z is the standard vector product in R
3. Relation (3.9) can be verified

using the well-known formulas: 〈x,y〉2 = x2y2 − 〈x × y〉2 and x × (y×x) =
〈x, z〉y − 〈x,y〉z .

Note that relation (3.9) can be written in the matrix form:

〈x,y, z〉2 =

∣
∣
∣
∣
∣
∣

〈x,x〉 〈x,y〉 〈x, z〉
〈y,x〉 〈y,y〉 〈y, z〉
〈z,x〉 〈z,y〉 〈z, z〉

∣
∣
∣
∣
∣
∣
,

but this form is not convenient when determinant entries are noncommutative.
Lemma 2.4 gives the following invariant elements from U(g)K0 :

D4 = Υ2
12 + Ω2

12 + Θ2
12, D5 = Υ2

∗ + Ω2
∗ + Θ2

∗,

D6 =
1
2

({Υ12,Υ∗} + {Ω12,Ω∗} + {Θ12,Θ∗}) ,

D7 =
1
2

({�1,Υ12} + {�2,Ω12} + {�3,Θ12}) , (3.10)

D8 =
1
2

({�1,Υ∗} + {�2,Ω∗} + {�3,Θ∗}) , D9 = �2
1 + �2

2 + �2
3,

D10 = �1Ω12Θ∗ − �1Ω∗Θ12 + �2Υ∗Θ12 − �2Υ12Θ∗ + �3Ω∗Υ12

− �3Ω12Υ∗ .

Here we took into account that all three factors from every summand in
the last expression pairwise commutate. Invariant elements D4,D5,D6 were
considered in the general situation in Sect. 3.1.

In fact, invariant elements D7,D8,D9 and D10 do not belong to λ
(
S
(
p̃
)K0

)

because they are not symmetric w.r.t. all transposition of their factors of the
first degree. After complete symmetrization one can obtain invariant elements

D̃k ≡ Dk + D∗
k mod (U(g)k0)

K0 , k = 7, 8, 9, 10 .

from λ
(
S
(
p̃
)K0

)
, where D∗

k are elements from U (g)K0 with deg D∗
k < deg Dk.

For convenience we will use elements Dk instead of D̃k, k = 7, 8, 9, 10.
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Thus, operators D0, . . . , D10 generate the algebra DiffI(Pn(H)S). The de-
grees of these generators are as follows:

deg(D0) = 1, deg(D1) = deg(D2) = deg(D3) = deg(D4) = deg(D5)
(3.11)

= deg(D6) = 2, deg(D7) = deg(D8) = 3, deg(D9) = deg(D10) = 4 .

In the model of the space Pn(H) we can transpose the coordinates z1 and
z2. The operators D3,D4,D5,D8,D9,D10 are symmetric (invariant) w.r.t. this
transposition and the operators D0,�1,�2,�3,D6,D7 are skew symmetric.
The operators D1 and D2 turn into each other under this transposition.

It is easily verified that automorphisms ζα, σ act on �i,D7, . . . , D10, i =
1, 2, 3 as

ζα(�i) = �i, i = 1, 2, 3, ζα(D7) = cos(α)D7 − sin(α)D8,

ζα(D8) = sin(α)D7 + cos(α)D8 , ζα(D9) = D9,

ζα(D10) = D10, σ(�i) = −�i, i = 1, 2, 3,

σ(D7) = D7, σ(D8) = −D8 , σ(D9) = D9, σ(D10) = D10 .

Taking into account their action on other generators (see Sect. 3.1), one sees
that the transposition of z1 and z2 is equivalent to the composition σ ◦ ζπ in
the algebra DiffI(Pn(H)S).

In order to get the generators of the algebra DiffI(Hn(H)S) one can use
Proposition 1.5, formula (3.4) and make the formal substitution:

Λ → iΛ, Ψ1k → iΨ1k, Υ1k → iΥ1k, Ω1k → iΩ1k, Θ1k → iΘ1k, Υ12 → iΥ12,

Ω12 → iΩ12, Θ12 → iΘ12, Ψ2k → Ψ2k, Υ2k → Υ2k, Ω2k → Ω2k, Θ2k → Θ2k,

Υ∗ → Υ∗, Ω∗ → Ω∗, Θ∗ → Θ∗, k = 3, . . . , n + 1 .

This substitution produces the following substitution for the generators
D0, . . . , D10:

D0 → iD̄0, D1 → −D̄1, D2 → D̄2, D3 → iD̄3, D4 → −D̄4, D5 → D̄5 ,

D6 → iD̄6, D7 → −D̄7, D8 → iD̄8, D9 → −D̄9, D10 → −D̄10 .

(3.12)

The operators D̄0, . . . , D̄10 generate the algebra DiffI(Hn(H)S).

3.2.2 Relations in Algebras DiffI(Pn(H)S) and DiffI(Hn(H)S)

Here we shall find independent relations in the algebra DiffI(Pn(H)S) for
it’s generators D0, . . . , D10. In accordance with Sect. 2.1.4 they are of two
types. First type consists of commutator relations, because a commutator
of two differential operator of orders m1 and m2 is an operator of an order
m3 � m1 +m2−1. It gives 11(11−1)/2 = 55 relations. Due to (3.9) for n � 3
the second type consists of only one independent relation of the form:

D2
10 − D9D4D5 − D7D6D8 − D8D6D7 + D9D

2
6 + D7D5D7 + D8D4D8 = D′,

(3.13)
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where D′ is an operator of an order � 7 polynomial in D0, . . . , D10. The
expression for it is given below. If n = 2 the formula (3.7) gives another
independent relation of the form:

1
2
{D1,D2} − D2

3 − D9 = D′′,

where D′′ is an operator of an order � 3, polynomial in D0, . . . , D8. Direct
calculations give D′′ = D1 + D2, therefore in the case n = 2 one has the
additional relation:

1
2
{D1,D2} − D2

3 − D9 = D1 + D2 . (3.14)

For n = 2 using this relation one can exclude the element D9 from the list of
generators.

In principle, all relations can be obtained by straightforward calculations
in U(g) modulo (U(g)k0)

K0 , but these calculations became too cumbersome
to write all of them here. In appendix A there are examples of deriving some
commutator relations for the algebra DiffI(Pn(H)S). After getting some com-
mutator relations by direct calculations it is possible to find some other ones
(see appendix A) using the Jacobi identity:

[Di, [Dj ,Dk]] + [Dk, [Di,Dj ]] + [Dj , [Dk,Di]] = 0 ,

which is valid, in particular, in every associative algebra. This identity gives
also a tool for checking the commutator relations already found.

The element D′ can be written in the following way D′ =
∑7

i=2 δi, where

δ7 = D7(D1 − D2)D5 + 2D8D3D4 − D7{D3,D6} −
1
2
D8{D1 − D2,D6}

+ 2D9D6D0,

δ6 =
5
4
D0(D1 − D2)D8 −

5
2
D0D3D7 + D2

7 + D2
8 + 2D9D4 −

9
4
D2

3D4

− 9
16

(D1 − D2)2D5 +
9
4
(D1 − D2)D3D6 −

3
2
(D1 + D2)D5D4

+
3
2
(D1 + D2)D2

6 − 13
4

D2
0D9 −

5
2
D2

0D10 +
3
2
(D4 + D5)D10 ,

δ5 =
33
8

D0(D1 + D2)D6 −
9
4

(
D3D8 +

1
2
(D1 − D2)D7

)
,

δ4 =
9
4
D2

3 +
9
16

(D1 − D2)2 +
1
8
(D1 + D2)(9D5 − 15D4) +

19
2

D9 +
3
2
D10

+
3
2
D2

0(D1 + D2) + 3n(n − 1)(D5D4 − D2
6) ,

δ3 = −33
4

n(n − 1)D0D6 ,

δ2 =
1
4
n(n − 1)(15D4 − 9D5) − 3n(n − 1)D2

0 .

Below there are all 55 commutator relations in lexicographic order.
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[D0,D1] = −D3, [D0,D2] = D3, [D0,D3] =
1
2
(D1 − D2), [D0,D4] = −2D6 ,

[D0,D5] = 2D6, [D0,D6] = D4 − D5, [D0,D7] = −D8, [D0,D8] = D7,

[D0,D9] = 0, [D0,D10] = 0, [D1,D2] = −{D0,D3} − 2D7,

[D1,D3] = −1
2
{D0,D1} + D8 + n(n − 1)D0 ,

[D1,D4] = 2D7, [D1,D5] = 0, [D1,D6] = D8, [D1,D7] = −1
2
{D3,D6}

− 1
2
{D1,D4} +

3
8
(D1 − D2) + D9 + D10 + n(n − 1)D4,

[D1,D8] = −1
2
{D3,D5} −

1
2
{D1,D6} +

3
4
D3 + n(n − 1)D6,

[D1,D9] = −{D3,D8} − {D1,D7} −
3
4
{D0,D3} + 2

(
n − 3

2

)(
n +

1
2

)
D7,

[D1,D10] =
1
2
{D6,D8} −

1
2
{D5,D7} +

3
8
{D0,D3} +

1
2
D7,

[D2,D3] =
1
2
{D0,D2} + D8 − n(n − 1)D0, [D2,D4] = −2D7, [D2,D5] = 0 ,

[D2,D6] = −D8, [D2,D7] = −1
2
{D3,D6} +

1
2
{D2,D4}

+
3
8
(D1 − D2) − D9 − D10 − n(n − 1)D4,

[D2,D8] = −1
2
{D3,D5} +

1
2
{D2,D6} +

3
4
D3 − n(n − 1)D6,

[D2,D9] = −{D3,D8} + {D2,D7} +
3
4
{D0,D3}

− 2
(

n − 3
2

)(
n +

1
2

)
D7, (3.15)

[D2,D10] = −1
2
{D6,D8} +

1
2
{D5,D7} −

3
8
{D0,D3}

− 1
2
D7, [D3,D4] = 0, [D3,D5] = 2D8,

[D3,D6] = D7, [D3,D7] = −1
4
{D1 + D2,D6} + n(n − 1)D6,

[D3,D8] = −1
4
{D1 + D2,D5} + n(n − 1)D5 + D9 + D10,

[D3,D9] = −1
2
{D1 + D2,D8} +

3
8
{D0,D1 − D2}

+ 2
(

n − 3
2

)(
n +

1
2

)
D8, [D3,D10] =

1
2
{D6,D7} −

1
2
{D4,D8}

− 3
16

{D0,D1 − D2} +
1
2
D8, [D4,D5] = −2{D0,D6},

[D4,D6] = −{D0,D4} +
3
2
D0 , [D4,D7] =

1
2
{D1 − D2,D4} +

3
4
(D2 − D1),

[D4,D8] =
1
2
{D1 − D2,D6} − {D0,D7} ,
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[D4,D9] = {D1 − D2,D7}, [D4,D10] = 0, [D5,D6] = {D0,D5} −
3
2
D0 ,

[D5,D7] = {D3,D6} + {D0,D8}, [D5,D8] = {D3,D5} −
3
2
D3,

[D5,D9] = 2{D3,D8} , [D5,D10] = 0,

[D6,D7] =
1
4
{D1 − D2,D6} +

1
2
{D3,D4} +

1
2
{D0,D7} −

3
4
D3 ,

[D6,D8] =
1
4
{D1 − D2,D5} +

1
2
{D3,D6} −

1
2
{D0,D8} +

3
8
(D2 − D1) ,

[D6,D9] =
1
2
{D1 − D2,D8} + {D3,D7}, [D6,D10] = 0,

[D7,D8] =
1
4
{D1 − D2,D8} −

1
2
{D3,D7} +

3
16

{D0,D1 + D2}

− 1
2
{D0,D9 + D10} −

3
4
n(n − 1)D0,

[D7,D9] =
1
4
{D3,D6} +

1
8
{D1 − D2,D4} +

1
2
{D1 − D2,D9 + D10}

− 3
8
(D2

1 − D2
2) +

3
4

(
n2 − n − 1

4

)
(D1 − D2),

[D7,D10] =
1
4
{D2 − D1,D

2
6} −

1
4
{{D0,D7},D6} +

1
4
{{D0,D4},D8}

+
1
8
{{D1 − D2,D5},D4} −

1
4
{D3,D6}

+
1
8
{D2 − D1, 3D4 + D5} −

1
2
{D0,D8} +

15
32

(D1 − D2) ,

[D8,D9] =
1
8
{D1 − D2,D6} +

1
4
{D3,D5} −

3
8
{D3,D1 + D2}

+ {D3,D9 + D10} +
3
2

(
n2 − n − 1

4

)
D3,

[D8,D10] = −1
4
{{D3,D6},D6} +

1
4
{{D0,D6},D8} −

1
4
{{D0,D5},D7}

+
1
4
{{D3,D5},D4} −

1
2
{D3,D5} −

1
4
{D3,D4} +

1
4
{D0,D7}

+
9
16

D3, [D9,D10] =
1
4
{−{D6,D8} + {D5,D7},D1 − D2}

+
1
2
{{D3,D8},D4} −

1
2
{{D3,D6},D7} +

1
4
{D2 − D1,D7}

− 1
2
{D3,D8} .

It is interesting that the operators D9 and D10 arise on the right hand
sides of these relations only in the combination D9 + D10.

Using relations (3.15) it is not difficult to verify once again that the Casimir
operator C1 = D2

0 + D1 + D2 + D4 + D5 lies in the centre of the algebra
DiffI(Pn(H)S) in accordance with Sect. 3.1. Since UH(n + 1) ∼= Sp(2(n + 1))
is the compact real form of the group Sp(2(n+1), C), Proposition 1.5 implies
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that AdUH(n+1)-action in uH(n+1) has n+1 independent invariants of degrees
2, 4, 6, . . . , 2n + 2.

Proposition 3.1. The image of the map η ◦ λ∗|S(uH(n+1))UH
(n+1) is generated

by some elements of degree � 8 .

Proof. The Lie algebra uH(n′) consists of matrices of the form A+Bj, A,B ∈
Mat(n′, C), ĀT = −A,BT = B. It is easy to verify that the map

A + Bj →
(

A B
−B̄ Ā

)
∈ Mat(2n′, C) (3.16)

defines an isomorphism of uH(n′) with the algebra sp(n′) := sp(n′, C)∩u(2n′) .
Groups UH(n′) and Sp(n′) are also isomorphic. It is known [134] that free
generators of the algebra S (sp(n′))Sp(n′) correspond to coefficients p2k, k =
1, . . . , n′ of the polynomial:

pC(χ) = det (χ id−iC) = χ2n′
+

2n′
∑

k=1

pkχ2n′−k, C ∈ sp(n′) .

Note that coefficients p2k−1, k = 1, . . . , n′ vanish and p2k, k = 1, . . . , n′ are
real. Indeed, since C ∈ sp(n′, C) it holds

CT =
(

0 −E
E 0

)
C

(
0 −E
E 0

)

and

pC(χ) = pCT (χ) = det
(
−
(

0 −E
E 0

)
(χ id +iC)

(
0 −E
E 0

))

= det
(

0 −E
E 0

)2

det (−χ id−iC) = pC(−χ)

that proves the first claim. Also, it holds
(
iC
)T

= −iC̄T = iC, since C ∈
u(2n′). Therefore, iC is a hermitian matrix, which proves the second claim.

Now let n′ = n+1. Due to (3.4) coordinates in g ∼= uH(n+1), corresponding
to the subspace p̃, are located only in the first two rows and columns of a
matrix A + Bj ∈ uH(n + 1). The isomorphism (3.16) maps these rows and
columns into four rows and columns of the matrix

(
A B
−B̄ Ā

)
.

Therefore, these coordinates occur in p2k, k = 1, . . . , n at most in the eight
degree. The application of Lemma 2.4 completes the proof. ��

Corollary 3.1. Since there are only finite linearly independent elements in
ZDiffI(Pn(H)S) of degree � 8, the map η ◦ λ∗|S(uH(n+1))UH

(n+1) is not injective
for n large enough.



3.2 Algebras DiffI(P
n(H)S) and DiffI(H

n(H)S) 63

Instead of passing from generators of S (uH(n + 1))UH(n+1) to the corre-
sponding element of ZDiffI(Pn(H)S) through cumbersome calculations we se-
lect elements from the algebra ZDiffI(Pn(H)S) of a degree not higher than 4.
Straightforward calculations imply that these elements are linear combination
of elements C2

1 ,

C2 =
1
2
{D1,D2} − D2

3 − D9 −
(
n2 − n − 1

)
(D1 + D2) ,

C3 =
1
4
{D1 + D2,D4 + D5} +

1
4
(D1 − D2)2 + D2

3 +
1
4
(D4 − D5)2 + D2

6 + D9

− 2D10 +
1
4
{D2

0,D1 + D2 + D4 + D5} +
1
4
D4

0 −
(

n2 − n − 3
2

)
(D4 + D5)

+
(
−n2 + n +

7
4

)
D2

0 ,

of the forth degree and element C1 of the second degree. Due to (3.14) it holds
C2 = 0 for n = 2.

In the case n � 3 the existence of two elements from ZDiffI(Pn(H)S)
(independent from each other and C1) of the forth degree could mean one
of two following possibilities. The first one is the existence of an element
from ZDiffI(Pn(H)S), not lying in η ◦ λ∗

(
S (uH(n + 1))UH(n+1)

)
. The second

possibility is that the image in ZDiffI(Pn(H)S) of some element of a degree
� 6 from S (uH(n + 1))UH(n+1) is of the forth degree.

Using substitution (3.12) one gets from (3.15) the commutator relations
for the algebra DiffI(Hn(H)S):

[D̄0, D̄1] = D̄3, [D̄0, D̄2] = D̄3, [D̄0, D̄3] =
1
2
(D̄1 + D̄2), [D̄0, D̄4] = 2D̄6 ,

[D̄0, D̄5] = 2D̄6, [D̄0, D̄6] = D̄4 + D̄5, [D̄0, D̄7] = D̄8, [D̄0, D̄8] = D̄7,

[D̄0, D̄9] = 0 , [D̄0, D̄10] = 0, [D̄1, D̄2] = −{D̄0, D̄3} − 2D̄7,

[D̄1, D̄3] = −1
2
{D̄0, D̄1} − D̄8 − n(n − 1)D̄0 ,

[D̄1, D̄4] = −2D̄7, [D̄1, D̄5] = 0, [D̄1, D̄6] = −D̄8,

[D̄1, D̄7] =
1
2
{D̄3, D̄6} −

1
2
{D̄1, D̄4} −

3
8
(D̄1 + D̄2) − D̄9 − D̄10

− n(n − 1)D̄4, [D̄1, D̄8] =
1
2
{D̄3, D̄5} −

1
2
{D̄1, D̄6} −

3
4
D̄3

− n(n − 1)D̄6, [D̄1, D̄9] = {D̄3, D̄8} − {D̄1, D̄7} +
3
4
{D̄0, D̄3}

− 2
(

n − 3
2

)(
n +

1
2

)
D̄7, [D̄1, D̄10] = −1

2
{D̄6, D̄8} +

1
2
{D̄5, D̄7}

− 3
8
{D̄0, D̄3} −

1
2
D̄7 ,

[D̄2, D̄3] =
1
2
{D̄0, D̄2} + D̄8 − n(n − 1)D̄0, [D̄2, D̄4] = −2D̄7, [D̄2, D̄5] = 0 ,
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[D̄2, D̄6] = −D̄8, [D̄2, D̄7] = −1
2
{D̄3, D̄6} +

1
2
{D̄2, D̄4}

+
3
8
(D̄1 + D̄2) − D̄9 − D̄10 − n(n − 1)D̄4,

[D̄2, D̄8] = −1
2
{D̄3, D̄5} +

1
2
{D̄2, D̄6} +

3
4
D̄3 − n(n − 1)D̄6 ,

[D̄2, D̄9] = −{D̄3, D̄8} + {D̄2, D̄7} +
3
4
{D̄0, D̄3} − 2

(
n − 3

2

)(
n +

1
2

)
D̄7 ,

(3.17)

[D̄2, D̄10] = −1
2
{D̄6, D̄8} +

1
2
{D̄5, D̄7} −

3
8
{D̄0, D̄3} −

1
2
D̄7,

[D̄3, D̄4] = 0, [D̄3, D̄5] = 2D̄8 ,

[D̄3, D̄6] = D̄7, [D̄3, D̄7] = −1
4
{D̄1 − D̄2, D̄6} − n(n − 1)D̄6,

[D̄3, D̄8] = −1
4
{D̄1 − D̄2, D̄5} − n(n − 1)D̄5 + D̄9 + D̄10,

[D̄3, D̄9] = −1
2
{D̄1 − D̄2, D̄8} +

3
8
{D̄0, D̄1 + D̄2} − 2

(
n − 3

2

)(
n +

1
2

)
D̄8,

[D̄3, D̄10] =
1
2
{D̄6, D̄7} −

1
2
{D̄4, D̄8} −

3
16

{D̄0, D̄1 + D̄2} −
1
2
D̄8,

[D̄4, D̄5] = −2{D̄0, D̄6}, [D̄4, D̄6] = −{D̄0, D̄4} −
3
2
D̄0 ,

[D̄4, D̄7] =
1
2
{D̄1 + D̄2, D̄4} +

3
4
(D̄2 + D̄1),

[D̄4, D̄8] =
1
2
{D̄1 + D̄2, D̄6} − {D̄0, D̄7} ,

[D̄4, D̄9] = {D̄1 + D̄2, D̄7}, [D̄4, D̄10] = 0, [D̄5, D̄6] = {D̄0, D̄5} −
3
2
D̄0,

[D̄5, D̄7] = {D̄3, D̄6} + {D̄0, D̄8}, [D̄5, D̄8] = {D̄3, D̄5} −
3
2
D̄3,

[D̄5, D̄9] = 2{D̄3, D̄8}, [D̄5, D̄10] = 0,

[D̄6, D̄7] =
1
4
{D̄1 + D̄2, D̄6} +

1
2
{D̄3, D̄4} +

1
2
{D̄0, D̄7} +

3
4
D̄3 ,

[D̄6, D̄8] =
1
4
{D̄1 + D̄2, D̄5} +

1
2
{D̄3, D̄6} −

1
2
{D̄0, D̄8} −

3
8
(D̄1 + D̄2) ,

[D̄6, D̄9] =
1
2
{D̄1 + D̄2, D̄8} + {D̄3, D̄7}, [D̄6, D̄10] = 0,

[D̄7, D̄8] =
1
4
{D̄1 + D̄2, D̄8} −

1
2
{D̄3, D̄7} +

3
16

{D̄0, D̄1 − D̄2}

− 1
2
{D̄0, D̄9 + D̄10} +

3
4
n(n − 1)D̄0 ,

[D̄7, D̄9] = −1
4
{D̄3, D̄6} +

1
8
{D̄1 + D̄2, D̄4} +

1
2
{D̄1 + D̄2, D̄9 + D̄10}

− 3
8
(D̄2

1 − D̄2
2) −

3
4

(
n2 − n − 1

4

)
(D̄1 + D̄2),
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[D̄7, D̄10] = −1
4
{D̄1 + D̄2, D̄

2
6} −

1
4
{{D̄0, D̄7}, D̄6} +

1
4
{{D̄0, D̄4}, D̄8}

+
1
8
{{D̄1 + D̄2, D̄5}, D̄4} +

1
4
{D̄3, D̄6}

+
1
8
{D̄1 + D̄2, D̄5 − 3D̄4} +

1
2
{D̄0, D̄8} −

15
32

(D̄1 + D̄2) ,

[D̄8, D̄9] =
1
8
{D̄1 + D̄2, D̄6} −

1
4
{D̄3, D̄5} −

3
8
{D̄3, D̄1 − D̄2}

+ {D̄3, D̄9 + D̄10} −
3
2

(
n2 − n − 1

4

)
D̄3,

[D̄8, D̄10] = −1
4
{{D̄3, D̄6}, D̄6} +

1
4
{{D̄0, D̄6}, D̄8} −

1
4
{{D̄0, D̄5}, D̄7}

+
1
4
{{D̄3, D̄5}, D̄4} +

1
2
{D̄3, D̄5} −

1
4
{D̄3, D̄4} +

1
4
{D̄0, D̄7}

− 9
16

D̄3, [D̄9, D̄10] =
1
4
{−{D̄6, D̄8} + {D̄5, D̄7}, D̄1 + D̄2}

+
1
2
{{D̄3, D̄8}, D̄4} −

1
2
{{D̄3, D̄6}, D̄7} −

1
4
{D̄1 + D̄2, D̄7}

+
1
2
{D̄3, D̄8} .

The analogue in DiffI(Hn(H)S) for the operator C1 is C̄1 = D̄2
0 + D̄1 −

D̄2 + D̄4 − D̄5. For the operator C2 and C3 such analogs are respectively

C̄2 =
1
2
{D̄1, D̄2} − D̄2

3 − D̄9 − (n2 − n − 1)(D̄1 − D̄2)

and

C̄3 =
1
4
{D̄1 − D̄2, D̄4 − D̄5} +

1
4
(D̄1 + D̄2)2 − D̄2

3 +
1
4
(D̄4 + D̄5)2 − D̄2

6

− D̄9 + 2D̄10 +
1
4
{D̄2

0, D̄1 − D̄2 + D̄4 − D̄5} +
1
4
D̄4

0

+
(

n2 − n − 3
2

)
(D̄4 − D̄5) +

(
n2 − n − 7

4

)
D̄2

0 .

Relation (3.13) now becomes:

D̄2
10− D̄9D̄4D̄5− D̄7D̄6D̄8− D̄8D̄6D̄7 + D̄9D̄

2
6 + D̄7D̄5D̄7 + D̄8D̄4D̄8 =

7∑

i=2

δ̄i,

(3.18)
where

δ̄7 = D̄7(D̄1 + D̄2)D̄5 + 2D̄8D̄3D̄4 − D̄7{D̄3, D̄6} −
1
2
D̄8{D̄1 + D̄2, D̄6}

+ 2D̄9D̄6D̄0,

δ̄6 =
5
4
D̄0(D̄1 + D̄2)D̄8 −

5
2
D̄0D̄3D̄7 + D̄2

7 − D̄2
8 + 2D̄9D̄4 −

9
4
D̄2

3D̄4

− 9
16

(D̄1 + D̄2)2D̄5 +
9
4
(D̄1 + D2)D̄3D̄6 −

3
2
(D̄1 − D̄2)D̄5D̄4
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+
3
2
(D̄1 − D̄2)D̄2

6 − 13
4

D̄2
0D̄9 −

5
2
D̄2

0D̄10 +
3
2
(D̄4 − D̄5)D̄10,

δ̄5 =
33
8

D̄0(D̄1 − D̄2)D̄6 +
9
4

(
D̄3D̄8 −

1
2
(D̄1 + D̄2)D̄7

)
,

δ̄4 = −9
4
D̄2

3 +
9
16

(D̄1 + D̄2)2 −
1
8
(D̄1 − D̄2)(9D̄5 + 15D̄4) −

19
2

D̄9 −
3
2
D̄10

+
3
2
D̄2

0(D̄1 − D̄2) − 3n(n − 1)(D̄5D̄4 − D̄2
6) ,

δ̄3 =
33
4

n(n − 1)D̄0D̄6 ,

δ̄2 = −1
4
n(n − 1)(15D̄4 + 9D̄5) + 3n(n − 1)D̄2

0 .

In the case n = 2 the additional relation (3.14) becomes:

1
2
{D̄1, D̄2} − D̄2

3 − D̄9 = D̄1 − D̄2 . (3.19)

The correspondence with the compact case and Proposition 3.1 imply that
for the space Hn(H)S the image of the map η ◦ λ∗|S(g)G is generated by some
elements of degree � 8.

3.3 Algebras DiffI(P
n(C)S) and DiffI(H

n(C)S)

Here we use notations from Sect. 1.3.2.

3.3.1 Generators of Algebras DiffI(Pn(C)S) and DiffI(Hn(C)S)

Consider now the space Pn(C)S . Due to the isomorphism P1(C) ∼= S2 we
again assume that n � 2.

Suppose that z̃0 = (1, 0, . . . , 0) ∈ C
n+1 and an element ξ0 ∈ Tz̃0C

n+1 ∼=
C

n+1 has coordinates (0, 1, 0, . . . , 0). Put z0 = πz̃0, ζ0 = π∗ξ0 ∈ Tz0P
n(C).

The stationary subgroup K0 ⊂ G = SU(n+1), corresponding to the point
(z0, ζ0) ∈ Pn(C)S, is generated by the group K1 = SU(n − 1), acting onto
the last (n − 1)th coordinates and by the group K2 = U(1), acting onto the
homogeneous coordinates in the space Pn(C) as:

(x1 : . . . : xn+1) → (eiφx1 : eiφx2 : e−2iφx3 : x4 : . . . : xn+1) . (3.20)

This yields dimR K0 = (n − 1)2, K0
∼= U(n − 1). In particular, the group K0

is connected.
The Lie algebra k0 of the group K0 is spanned by elements (1.14) as 3 �

k < j � n + 1 and elements:

Υj − Υ3 =
i
2
(E33 − Ejj), 3 < j � n + 1, 2Υ3 − Υ2 =

i
2
(E11 + E22 − 2E33) .
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Choose a subspace p̃ ⊂ g = su(n + 1) as the linear hull of elements:

Ψ1k, Υ1k, 2 � k � n + 1, Ψ2k, Υ2k, 3 � k � n + 1, Υ∗ = Υ2 . (3.21)

It holds p̃ ⊕ k0 = g. Taking into account relations (1.12) it is easily obtained
that the expansion su(n + 1) = p̃ ⊕ k0 is reductive, i.e., [p̃, k0] ⊂ p̃.

We will obtain the particular case of Proposition 1.2 for q1 = 2n−2, q2 = 1
setting:

Λ = −Ψ12, eλ,k−2 = Ψ1k, eλ,n−3+k = Υ1k, fλ,k−2 = −Ψ2k,

fλ,n−3+k = −Υ2k, e2λ,1 = Υ12, f2λ,1 = Υ∗, k = 3, . . . , n + 1 .
(3.22)

Now we shall find the generators of the algebra S
(
p̃
)K0 . The expansion

p̃ = a ⊕ kλ ⊕ k2λ ⊕ pλ ⊕ p2λ is invariant w.r.t. the AdK0-action. In the spaces
a, p2λ, k2λ the K0-action is trivial that gives the invariants D0 = Λ, D4 =
Υ12, D5 = Υ∗ ∈ λ

(
S
(
p̃
)K0

)
. Operators D4,D5 are square roots of their

analogs from Sect. 3.1.
From formulas (3.22) we see that the space pλ

∼= C
n−1 consists of matrices

of the form

(
0 −a∗

a 0

)
≡










0 0 −ā1 . . . −ān−1

0 0 0 . . . 0
a1 0 0 . . . 0
...

...
...

. . .
...

an−1 0 0 . . . 0










, a1, . . . , an−1 ∈ C .

Similarly, the space kλ
∼= C

n−1 consist of matrices of the form




0 0 0
0 0 −b∗

0 b 0



 ≡










0 0 0 . . . 0
0 0 −b̄1 . . . −b̄n−1

0 b1 0 . . . 0
...

...
...

. . .
...

0 bn−1 0 . . . 0










, b1, . . . , bn−1 ∈ C .

The action of the group K1 in the spaces pλ and kλ is equivalent to the
tautological action of the group SU(n − 1) in the space C

n−1 : a → Ua, U ∈
SU(n − 1), likewise in Sect. 3.2.1. It is easy to verify that the action (3.20)
generates the K1-actions: a1 → exp−3iφ a1, ai → exp−iφ ai, b1 → exp−3iφ b1,
bi → exp−iφ bi, i = 2, . . . , n − 1. Therefore, the K0-action in spaces pλ and kλ

is equivalent to the tautological U(n − 1)-action in C
n−1.

This action has one independent real invariant 〈z, z〉, z ∈ C
n−1 and the

diagonal action of U(n − 1) in the space pλ ⊕ kλ
∼= C

n−1 ⊕ C
n−1 has four

(independent iff n � 3) real invariants:

〈z1, z1〉 ∈ R, 〈z2, z2〉 ∈ R, 〈z1, z2〉 ∈ C ∼= R
2, z1, z2 ∈ C

n−1 . (3.23)

Lemma 2.4 gives the corresponding elements from λ
(
S
(
p̃
)K0

)
in the following

form:
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D1 =
n+1∑

k=3

(
Ψ2

1k + Υ2
1k

)
, D2 =

n+1∑

k=3

(
Ψ2

2k + Υ2
2k

)
,

D3 = −1
2

n+1∑

k=3

({Ψ1k,Ψ2k} + {Υ1k,Υ2k}) , (3.24)

� =
1
2

n+1∑

k=3

(−{Ψ1k,Υ2k} + {Ψ2k,Υ1k}) .

In this case only operator � is new w.r.t. Sect. 3.1.
If n = 2, then there is the unique independent relation between invariants

(3.23):

|〈z1, z2〉|2 = |z̄1z2|2 = |z1|2 |z2|2 = 〈z1, z1〉〈z2, z2〉, z1 = z1, z2 = z2 ∈ C .
(3.25)

Thus, operators D0, . . . , D5,� generate the algebra DiffI(Pn(C)S). The
degrees of these generators are as follows:

deg(D0) = deg(D4) = deg(D5) = 1, deg(D1) = deg(D2) (3.26)= deg(D3) = deg(�) = 2 .

The operators D3,D4 are symmetric and the operators D0,�,D5 are skew
symmetric w.r.t. the transposition of coordinates z1 and z2. The operators D1

and D2 turn into each other under this transposition.
In order to get the generators of the algebra DiffI(Hn(C)S) we can use

the formal substitution:

Λ → iΛ, Ψ1k → iΨ1k, Υ1k → iΥ1k, Υ12 → iΥ12,

Ψ2k → Ψ2k, Υ2k → Υ2k, Υ∗ → Υ∗, k = 3, . . . , n + 1 .

This substitution produces the following substitution for the generators
D0, . . . , D5,�:

D0 → iD̄0, D1 → −D̄1, D2 → D̄2, D3 → iD̄3,
(3.27)

D4 → iD̄4, � → i�̄, D5 → D̄5 .

The operators D̄0, . . . , D̄5, �̄ generate the algebra DiffI(Hn(C)S).

3.3.2 Relations in Algebras DiffI(Pn(C)S) and DiffI(Hn(C)S)

The commutator relations for the algebra DiffI(Pn(C)S) are as follows:



3.3 Algebras DiffI(P
n(C)S) and DiffI(H

n(C)S) 69

[D0,D1] = −D3, [D0,D2] = D3, [D0,D3] =
1
2
(D1 − D2),

[D0,D4] = −D5, [D0,D5] = D4 , [D0,�] = 0,

[D1,D2] = −{D0,D3} − {�,D4}, [D1,D3] = −1
2
{D0,D1}

+
1
2
{�,D5} +

(n − 1)2

4
D0, [D1,D4] = �, [D1,D5] = 0,

[D1,�] = −1
2
{D1,D4} −

1
2
{D3,D5} +

(n − 1)2

4
D4, [D2,D3] =

1
2
{D0,D2}

+
1
2
{�,D5} −

(n − 1)2

4
D0, [D2,D4] = −�, [D2,D5] = 0,

[D2,�] =
1
2
{D2,D4} −

1
2
{D3,D5} −

(n − 1)2

4
D4, [D3,D4] = 0,

[D3,D5] = �, [D3,�] = −1
4
{D1 + D2,D5} +

(n − 1)2

4
D5, [D4,D5] = −D0,

[D4,�] =
1
2
(D1 − D2), [D5,�] = D3 .

For n > 2 there are no relations of the second type. For n = 2 there is one
relation of the second type due to (3.25):

1
2
{D1,D2} − D2

3 − �2 − 1
4
(D2

0 + D2
4 + D2

5) = 0 . (3.28)

Propositions 1.5 and 2.2 imply the existence of n independent generators for
the algebra

ZDiffI (SU(n + 1)) ∼= Z U(u(n + 1))

of degrees 2, 3, 4, . . . , n + 1. The image in ZDiffI(Pn(C)S) of the generator of
the second degree is the Casimir operator C1 = D2

0 + D1 + D2 + D2
4 + D2

5.
One can verify by direct calculations that all elements from ZDiffI(Pn(C)S)
of degrees � 4 are linear combinations of elements C1, C

2
1 , C2 and C3, where

C2 = (D1 − D2) D5 − 2D3D4 + 2D0�,

C3 =
1
2
{D1,D2} − D2

3 − �2 − n2 − 2n − 1
4

(D1 + D2) .

Due to (3.28) in the case n = 2 one has C1 = 4C3. The degree of C2 is 3 and
the degree of C3 for n � 3 is 4.

Proposition 3.2. The image of the map η ◦ λ∗|S(u(n+1))U(n+1) is generated
by elements of degree � 4.

Proof. It is known [134] that free generators of the algebra S (u(n + 1))U(n+1)

correspond to coefficients pk, k = 1, . . . , n + 1 of the polynomial:

pA(χ) = det (χ id−iA) = χn+1 +
n+1∑

k=1

pkχn+1−k, A ∈ u(n + 1) .
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By the same arguments as in the proof of Proposition 3.1 coefficients pk, k =
1, . . . , n+1 are real. Due to (3.22) coordinates in g ∼= u(n+1), corresponding to
the subspace p̃, are located only in the first two rows and columns of a matrix
A ∈ u(n+1). Therefore, these coordinates occur in pk, k = 1, . . . , n+1 at most
in the fourth degree. The application of Lemma 2.4 completes the proof. ��
Corollary 3.2. Elements C1, C2 and C3 generate a subalgebra in
ZDiffI(Pn(C)S) containing the subalgebra η ◦ λ∗

(
S (u(n + 1))U(n+1)

)
. Since

there are only finite linearly independent elements in ZDiffI(Pn(C)S) of degree
� 4, the map η ◦ λ∗|S(u(n+1))U(n+1) is not injective for n large enough.

Using substitution (3.27) one gets analogous relations for the algebra
DiffI(Hn(C)S).

The commutator relations are now as follows:

[D̄0, D̄1] = D̄3, [D̄0, D̄2] = D̄3, [D̄0, D̄3] =
1

2
(D̄2 + D̄1), [D̄0, D̄4] = D̄5, [D̄0, D̄5] = D̄4,

[D̄0, �̄] = 0, [D̄1, D̄2] = −{D̄0, D̄3} − {�̄, D̄4}, [D̄1, D̄3] = −1

2
{D̄0, D̄1} −

1

2
{�̄, D̄5}

− (n − 1)2

4
D̄0, [D̄1, D̄4] = −�̄, [D̄1, D̄5] = 0, [D̄1, �̄] = −1

2
{D̄1, D̄4} +

1

2
{D̄3, D̄5}

− (n − 1)2

4
D̄4, [D̄2, D̄3] =

1

2
{D̄0, D̄2} +

1

2
{�̄, D̄5} −

(n − 1)2

4
D̄0, [D̄2, D̄4] = −�̄,

[D̄2, D̄5] = 0, [D̄2, �̄] =
1

2
{D̄2, D̄4} −

1

2
{D̄3, D̄5} −

(n − 1)2

4
D̄4, [D̄3, D̄4] = 0,

[D̄3, D̄5] = �̄, [D̄3, �̄] = −1

4
{D̄1 − D̄2, D̄5} −

(n − 1)2

4
D̄5, [D̄4, D̄5] = −D̄0,

[D̄4, �̄] =
1

2
(D̄1 + D̄2), [D̄5, �̄] = D̄3 .

For n > 2 there are no relations of the second type. On the other hand for
n = 2 there is one relation of the second type analogous to (3.28):

1
2
{D̄1, D̄2} − D̄2

3 − �̄2 − 1
4
(D̄2

0 + D̄2
4 − D̄2

5) = 0 . (3.29)

The analogs in ZDiffI(Hn(C)S) of operators C1, C2 and C3 are

C̄1 = D̄2
0 + D̄1 − D̄2 + D̄2

4 − D̄2
5,

C̄2 =
(
D̄1 + D̄2

)
D̄5 − 2D̄3D̄4 + 2D̄0�̄,

C̄3 =
1
2
{D̄1, D̄2} − D̄2

3 − �̄2 − n2 − 2n − 1
4

(D̄1 − D̄2) .

The correspondence with the compact case and corollary 3.2 imply

Corollary 3.3. Let G be the identity component of the isometry group for the
space Hn(C). Elements C̄1, C̄2 and C̄3 generate a subalgebra in ZDiffI(Hn(C)S)
containing the subalgebra η ◦ λ∗

(
S (g)G

)
. Since there are only finite linearly

independent elements in ZDiffI(Hn(C)S) of degree � 4, the map η ◦ λ∗|S(g)G

is not injective for n large enough.
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3.4 Algebras DiffI(P
n(R)S), DiffI(S

n
S) and DiffI(H

n(R)S)

Here we use notations from Sect. 1.3.3.

3.4.1 Generators of Algebras DiffI(Sn
S) and DiffI(Hn(R)S)

Consider the space Sn
S. Suppose that z̃0 = (1, 0, . . . , 0) ∈ R

n+1 and an element
ξ0 ∈ Tz̃0R

n+1 ∼= R
n+1 has coordinates (0, 1, 0, . . . , 0). Put z0 = πz̃0, ζ0 =

π∗ξ0 ∈ Tz0S
n
S.

The stationary subgroup K0 of the group SO(n+1), corresponding to the
point (z0, ζ0) ∈ Sn

S, is the group SO(n − 1), acting onto the last (n − 1)th
coordinates.

The group SO(n + 1) is a group covering of the identity component G of
the isometry group for Pn(R). The group K0 = SO(n − 1) ⊂ SO(n + 1) is a
group covering of the corresponding subgroup K ′

0 ⊂ G. Due to Proposition 1.6
orbits of AdK0 and AdK′

0
actions on p ⊂ g coincide with each other and

the construction from Sect. 2.1 implies the isomorphism DiffI(Pn(R)S) ∼=
DiffI(Sn

S).
The Lie algebra k0 of the group K0 is spanned by the elements Ψkj as

3 � k < j � n + 1. Choose the complimentary subspace p̃ to the subalgebra
k0 in the algebra g = so(n + 1) as the linear hull of elements:

Ψ1k, 2 � k � n + 1, Ψ2k, 3 � k � n + 1 . (3.30)

Then the expansion so(n + 1) = p̃ ⊕ so(n − 1) is reductive.
We will obtain the particular case of Proposition 1.2 for q1 = 0, q2 = n− 1

setting

Λ = −2Ψ12, e2λ,k−2 = 2Ψ1k, f2λ,k−2 = −2Ψ2k, k = 3, . . . , n + 1 . (3.31)

Consider the expansion p̃ = a ⊕ k2λ ⊕ p2λ, which is invariant w.r.t. the
AdK0-action. It is easy to see that the K0-action is trivial in the space a and
in the spaces k2λ and p2λ it is equivalent to the tautological action of the
group SO(n − 1) in the space R

n−1. The trivial K0-action in the space a has
the invariant element D0 = Λ. The description of base K0-invariants in the
space p2λ ⊕ k2λ is different in cases n = 2, n = 3 and n � 4.

The Case n � 4

The SO(n − 1)-action in R
n−1 has one independent real invariant: 〈z, z〉, z ∈

R
n−1, and the diagonal action of SO(n − 1) in the space p2λ ⊕ k2λ

∼= R
n−1 ⊕

R
n−1 has three independent real invariants:

〈z1, z1〉, 〈z2, z2〉, 〈z1, z2〉, z1, z2 ∈ R
n−1 . (3.32)

Lemma 2.4 gives the corresponding elements from λ
(
S
(
p̃
)K0

)
in the fol-

lowing form:
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D1 = 4
n+1∑

k=3

Ψ2
1k, D2 = 4

n+1∑

k=3

Ψ2
2k, D3 = −2

n+1∑

k=3

{Ψ1k,Ψ2k} .

All these invariants were found in Sect. 3.1 for the general situation.
Thus, operators D0,D1,D2,D3 generate the algebra DiffI(Sn

S). The de-
grees of these generators are as follows:

deg(D0) = 1, deg(D1) = deg(D2) = deg(D3) = 2 . (3.33)

The operator D3 is symmetric and the operators D0 is skew symmetric
w.r.t. the transposition of coordinates z1 and z2. The operators D1 and D2

turn into each other under this transposition.

The Case n = 2

In this case K0 is the trivial group and the independent invariants are
D0, D1 = e2λ,1, D2 = f2λ,1. Thus, the algebra DiffI(S2

S) is isomorphic to
U(so(3)). The centre of this algebra is generated by the operator D2

0+D2
1+D2

2.

The Case n = 3

In this case K0 = so(2) and one has the additional (with respect to the case
n � 4) invariant of the second order

� = 2({Ψ13,Ψ24} − {Ψ14,Ψ23}) .

It is algebraically connected with operators D0,D1,D2,D3 that are defined
as in the case n � 4.

Generators of the Algebra DiffI(Hn(R)S)

First, let n � 4. In order to get the generators of the algebra DiffI(Hn(R)S)
one can use the formal substitution:

Λ → iΛ, Ψ1k → iΨ1k, Ψ2k → Ψ2k, k = 3, . . . , n + 1 .

This substitution produces the following substitution for the generators
D0, . . . , D3:

D0 → iD̄0, D1 → −D̄1, D2 → D̄2, D3 → iD̄3 . (3.34)

The operators D̄0, . . . , D̄3 generate the algebra DiffI(Hn(R)S).
In the case n = 3 one has the additional substitution � → i�̄ and the

operators D̄0, . . . , D̄3, �̄ generate the algebra DiffI(H3(R)S).
In the case n = 2 one gets the substitutions

D0 → iD̄0, D1 → iD̄1, D2 → D̄2 .

The algebra DiffI(H2(R)S) is isomorphic to U(so(1, 2)) and its centre is
generated by the operator D2

0 + D2
1 − D2

2.
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3.4.2 Relations in Algebras DiffI(Sn
S) and DiffI(Hn(R)S)

Here we shall consider only the case n � 3, since DiffI(S2
S) ∼= U(so(3)) and

DiffI(H2(R)S) ∼= U(so(1, 2)).
The commutator relations for the algebra DiffI(Sn

S) are as follows:

[D0,D1] = −2D3, [D0,D2] = 2D3, [D0,D3] = D1 − D2,

[D1,D2] = −2{D0,D3} , (3.35)

[D1,D3] = −{D0,D1} +
(n − 1)(n − 3)

2
D0,

[D2,D3] = {D0,D2} −
(n − 1)(n − 3)

2
D0 .

For n = 3 the additional operator � lies in the centre of the algebra DiffI(S3
S).

For n > 3 there are no relations of the second type. For n = 3 there is one
independent relation of the second type:

1
2
{D1,D2} − D2

0 = D2
3 + �2 . (3.36)

It is easy to verify by direct calculation that the operators C1 = D2
0 +D1 +D2

and

C2 =
1
2
{D1,D2} − D2

3 +
(

1 − (n − 3)(n − 1)
4

)
(D1 + D2)

lie in the centre of the algebra DiffI(Sn
S) and for n � 4 any operator from

ZDiffI(Sn
S) of a degree � 6 is a polynomial in operators C1 and C2. If n = 3

it holds C2 = �2 + C1 due to (3.36). Every operator from ZDiffI(S3
S) of a

degree � 6 is a polynomial in operators C1 and �.

Proposition 3.3. The image of the map η ◦ χ∗|S(so(n+1))SO(n+1) is generated
by elements of degree � 4.

Proof. For a matrix A ∈ so(n + 1) consider the polynomial

pA(χ) = det (χ id−iA) = χn+1 +
n+1∑

k=1

pkχn+1−k.

By the same arguments as in the proof of Proposition 3.1 coefficients pk, k =
1, . . . , n + 1 are real. Moreover

pA(χ)=pAT (χ)=det (χ id +iA)=(−1)n+1 det (−χ id−iA)=(−1)n+1pA(−χ) .

This gives
n+1∑

k=1

pkχn+1−k ≡
n+1∑

k=1

(−1)kpkχn+1−k

and coefficients pk with odd indices vanish .
It is known [134] that free generators of S (so(n + 1))SO(n+1) in the case

n + 1 = 2� + 1, � � 1 correspond to coefficients pk, k = 2, 4, . . . , 2� and in the
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case n + 1 = 2�, � � 2 they correspond to coefficients pk, k = 2, 4, . . . , 2� − 2
and also to the Pfaffian Pf A of the matrix A .

The Pfaffian is given by the formula

Pf A =
∑

(i1i2|...|i2�−1i2�)

sgn(i1, . . . , i2)ai1i2 . . . ai2�−1i2�
, A ∈ so(2�),

where ai1i2 are elements of the matrix A and the summation is taken over
all nonequivalent partitions of the set 1, 2, . . . , 2� into pairs (two partitions
different only in ordering of pairs and in ordering inside pairs are considered
to be equivalent).

Due to (3.31) coordinates in g ∼= so(n + 1), corresponding to the subspace
p̃, are located only in the first two rows and columns of a matrix A ∈ so(n+1).
Therefore, these coordinates occur in pk, k = 2, 4, . . . and Pf A at most in the
fourth degree.

The application of Lemma 2.4 completes the proof. ��

Corollary 3.4. Elements C1, C2 in the case n � 4 (or elements C1,� in the
case n = 3) generate a subalgebra in ZDiffI(Sn

S), containing the subalgebra
η ◦ λ∗(S(so(n + 1))SO(n+1)). Since there are only finite linearly independent
elements in ZDiffI(Sn

S) of degree � 4, the map η ◦ λ∗|S(so(n+1))SO(n+1) is not
injective for n large enough.

Using substitution (3.34) one gets analogous relations for the algebra
DiffI(Hn(R)S).

The commutator relation are now as follows:

[D̄0, D̄1] = 2D̄3, [D̄0, D̄2]=2D̄3, [D̄0, D̄3]=D̄1 + D̄2, [D̄1, D̄2] = −2{D̄0, D̄3},

[D̄1, D̄3] = −{D̄0, D̄1} −
(n − 1)(n − 3)

2
D̄0,

[D̄2, D̄3] = {D̄0, D̄2} −
(n − 1)(n − 3)

2
D̄0,

and for n = 3 also

[D̄0, �̄] = [D̄1, �̄] = [D̄2, �̄] = [D̄3, �̄] = 0 .

The first three relations were found in [146], but the other relations were not
calculated there.

For n > 3 there are no relations of the second type. Contrary, for n = 3
there is one independent relation of the second type analogous to (3.36):

1
2
{D̄1, D̄2} − D̄2

0 = D̄2
3 + �̄2. (3.37)

The operators C̄1 = D̄2
0 + D̄1 − D̄2 and

C̄2 =
1
2
{D̄1, D̄2} − D̄2

3 +
(

1 − (n − 3)(n − 1)
4

)
(D̄1 − D̄2)
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lie in the centre of the algebra DiffI(Hn(R)S) and for n = 3 it holds C̄2 =
�̄2 + C̄1 due to (3.37).

For n � 4 every operator from ZDiffI(Hn
S) of a degree � 6 is a polynomial

in operators C̄1 and C̄2. Every operator from ZDiffI(H3
S) of a degree � 6 is a

polynomial in operators C̄1 and �̄.
The correspondence with the compact case and corollary 3.4 imply

Corollary 3.5. Let G be the identity component of the isometry group for the
space Hn(R). Elements C̄1, C̄2 in the case n � 4 (or elements C̄1, �̄ in the case
n = 3) generate a subalgebra in ZDiffI(Hn(R)S), containing the subalgebra
η ◦ λ∗

(
S (g)G

)
. Since there are only finite linearly independent elements in

ZDiffI(Hn(R)S) of degree � 4, the map η ◦ λ∗|S(g)G is not injective for n large
enough.

3.5 Algebras DiffI(P
n(Ca)S) and DiffI(H

n(Ca)S)

Here we use notations from Sect. 1.4.

3.5.1 Generators of Algebras DiffI

(
P2(Ca)S

)
and DiffI

(
H2(Ca)S

)

Now we are to specify the construction from Sect. 3.1 for the space M =
P2(Ca)S.

The special base in a ⊕ pλ ⊕ kλ ⊕ p2λ ⊕ k2λ

It is easily seen that

[Y1(ξ), E1] = 0, [Y2(ξ), E1] = X2(ξ), [Y3(ξ), E1] = −X3(ξ), ξ ∈ Ca,

so one can identify the space TE1P
2(Ca) with the space (Y2(ξ) + Y3(η)| ξ, η ∈

Ca) ⊂ m0. From (1.41) one gets that the expansion

(Y2(ξ) + Y3(η)| ξ, η ∈ Ca) = (Y3(ξ)| ξ ∈ R)⊕ (Y2(ξ)| ξ ∈ Ca)⊕ (Y3(ξ)| ξ ∈ Ca′)

is AdK0-invariant. Therefore, in accordance with Sects. 1.2 and 3.1, denote:

a := (Y3(ξ)| ξ ∈ R) , pλ := (Y2(ξ)| ξ ∈ Ca) , p2λ := (Y3(ξ)| ξ ∈ Ca′) .

Choose the point y from Sect. 3.1 as y =
(
E1,

1
2X3(1)

)
∈ P2(Ca)S, where

1
2X3(1) ∈ SE1 . One has the following expansions TyP2(Ca)S = TE1P

2(Ca) ⊕
T 1

2 X3(1)SE1 and

T 1
2 X3(1)SE1 � {X2(ξ)| ξ ∈ Ca} ⊕ {X3(ξ)| ξ ∈ Ca′} .

Due to ad Y1(ξ) (X3(1)) = −X2(ξ̄), ξ ∈ Ca the space (X2(ξ)| ξ ∈ Ca) ⊂
T 1

2 X3(1)SE1 is identified with the space (Y1(ξ)| ξ ∈ Ca) ⊂ m0. According to
the equality

dimR (Y1(ξ)| ξ ∈ Ca) = 8 = dimR pλ
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denote kλ := (Y1(ξ)| ξ ∈ Ca) . Thus, one gets m0 = a ⊕ pλ ⊕ p2λ ⊕ kλ.
Denote by Aij ∈ k′, i 
= j the generators of the rotation in the 2-

dimensional plane, containing elements ei, ej ∈ Ca3 such that Aijej =
ei, Aijei = −ej . The operators Aij , 1 � i < j � 7 compose a base of the
algebra k0. Similar to the quaternion case the linear hull q ⊂ k′ of elements
A0α =: Aα, α = 1, . . . , 7 is AdK0-invariant and is identified through the K0-
action on TyP2(Ca)S with the space (X3(ξ)| ξ ∈ Ca′) ⊂ T 1

2 X3(1)SE1 . There-
fore, we denote k2λ := q.

Lemma 3.1. It holds

A(1)
α = Lα, A(2)

α = Rα, A
(1)
αβ = Lβ,α, A

(2)
αβ = Rβ,α,

C3,eα,eβ
= 4Aβ,α, C3,e0,eα

= −4Aα, α, β = 1, . . . , 7, α 
= β .

Proof. From (1.40) one has

A(3)(ξ) = A(1)(ξ) + ξA(2)(1) .

Let A(1) = Lα, then A(2) = Rα and A(3)(ek) = 1
2 (eαēk + ēkeα) = − 1

2 (ekeα

+eαek). If 1 � k 
= α, then ekeα = −eαek and A(3)(ek) = 0. Therefore, A(3) =
Aα due to A(3)(1) = −eα, A(3)(eα) = 1. This proves A

(1)
α = Lα, A

(2)
α = Rα.

Let now A(1) = Lβ,α, then A(2) = Rβ,α and A(3)(ek) =
1
2 (eβ · eαēk + ēk · eαeβ) = 1

2 (ekeα · eβ + eβeα · ek). It is easy to verify by di-
rect computation that if α = 1, β = 2, then A(3)(ek) = 0, for k 
= 1, 2 and
A(3)(e1) = −e2, A(3)(e2) = e1. Thus L

(3)
β,α = A12. Therefore L

(3)
β,α = Aαβ for

any other pair of eα, eβ , since the group G2 of automorphisms of Ca acts
transitively on all pairs of imaginary units ([142], lecture 15). This proves
A

(1)
αβ = Lβ,α, A

(2)
αβ = Rβ,α.

The last two equalities of this lemma are obvious. ��

Let summarize these reasoning in the following proposition:

Proposition 3.4. Choose the following base

Λ :=
1
2

ad Y3(e1), e2λ,α :=
1
2

ad Y3(eα), f2λ,α := κAα,

eλ,i := −1
2

ad Y2(ēi), fλ,i :=
1
2

ad Y1(ei), Ãαβ := κAαβ

in the space a ⊕ pλ ⊕ p2λ ⊕ kλ ⊕ k2λ, where latin indices vary from 0 to 7 and
greek ones (except λ) vary from 1 to 7. Then one gets the following commutator
relations:

[Λ, e2λ,α] = −f2λ,α, [Λ, f2λ,α] = e2λ,α, [Λ, eλ,i] = −1
2
fλ,i,

[Λ, fλ,i] =
1
2
eλ,i, [Λ, Ãαβ ] = 0, [e2λ,α, e2λ,β ] = Ãβα,

[e2λ,α, f2λ,β ] = −δαβΛ, [f2λ,α, f2λ,β ] = Ãβα, [e2λ,α, eλ,j ] =
1
2
fλ,eαej

,
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[e2λ,α, fλ,j ] =
1
2
eλ,eαej

, [f2λ,α, eλ,j ] = −1
2
eλ,eαej

, [f2λ,α, fλ,j ] =
1
2
fλ,eαej

,

[eλ,i, eλ,j ] =
1
4

κC2,ēi,ēj
=

1
2
f2λ,eiēj

+
1
2

κC̃2,i,j , i 
= j ,

[fλ,i, fλ,j ] =
1
4

κC1,ei,ej
= −1

2
f2λ,eiēj

+
1
2

κC̃1,i,j , i 
= j ,

[eλ,i, fλ,j ] =

{
− 1

2Λ, i = j

− 1
2e2λ,eiēj

, i 
= j
,

where fλ,eαej
:= fλ,i if eαej = ei and fλ,eαej

:= −fλ,i if eαej = −ei. Analo-
gous notation we use for eλ,i, e2λ,γ , f2λ,γ . Here operators C̃l,i,j , l = 1, 2, i 
= j
belongs to k0 and act as:

C̃1,i,j(ek) = ekei · ēj , ek 
= 1,±eiēj , C̃1,i,j(ek) = 0, ek = 1,±eiēj ,

C̃2,i,j(ek) = ej · ēiek, ek 
= 1,±eiēj , C̃2,i,j(ek) = 0, ek = 1,±eiēj .

The chosen bases Λ, eλ,i, e2λ,α, fλ,i, f2λ,α in spaces a, pλ, p2λ, kλ, k2λ correspond
to notations of proposition 1.2.

Proof. The commutator relations are consequences of (1.41), (1.42), Lemma 3.1
and relations in the algebra k′ � so(8). For example, let us calculate the com-
mutator [f2λ,α, eλ,j ]. Actually, from (1.41) and Lemma 3.1 one gets:

[f2λ,α, eλ,j ] = −
[
κAα,

1
2

ad Y2(ēj)
]

= −1
2

ad Y2

(
A(2)

α ēj

)
= −1

2
ad Y2 (Rαēj)

= −1
4

ad Y2 (ējeα) =
1
4

ad Y2 (ēj ēα) = −1
2
eλ,eαej

.

Similar calculations are also valid for [f2λ,α, fλ,j ].
Now, let us calculate [eλ,i, eλ,j ], i 
= j. From (1.42) we obtain:

[eλ,i, eλ,j ] =
1
4

[ad Y2(ēi), ad Y2(ēj)] =
1
4

κC2,ēi,ēj
, i 
= j .

From (1.32) and (1.43) one has

1
2
C2,ēi,ēj

(ek) =
1
2

(ej · ēiek − ei · ējek) = −ei · ējek .

In particular,

1
2
C2,ēi,ēj

(1) = −eiēj ,
1
2
C2,ēi,ēj

(eiēj) = − (ei · ēj)
2 = 1,

so
1
2

κC2,ēi,ēj
= κAeiēj

+ κC̃2,i,j = f2λ,eiēj
+ κC̃2,i,j ,

where C̃2,i,j ∈ k0 and

C̃2,i,j(ek) = ej · ēiek, ek 
= 1,±eiēj , C̃2,i,j(eiēj) = C̃2,i,j(1) = 0 .

The similar calculations are also valid for [fλ,i, fλ,j ]. ��
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Invariant elements in S(a ⊕ pλ ⊕ kλ ⊕ p2λ ⊕ k2λ)

Invariant operators D0, . . . , D6, corresponding to some AdK0-invariant ele-
ments in S(a⊕ pλ ⊕ kλ ⊕ p2λ ⊕ k2λ), are already constructed in Sect. 3.1. Here
we shall construct other independent AdK0-invariant elements in S(a ⊕ pλ ⊕
kλ ⊕ p2λ ⊕ k2λ) (or equivalently in S(pλ ⊕ kλ ⊕ p2λ ⊕ k2λ), since a is an in-
variant one-dimensional space) and also corresponding invariant differential
operators.

An element Φ ∈ K ′ is from K0 ⊂ K ′ iff Φ3(1) = 1 and then Φ3(ξ) = ξ
for any ξ ∈ R ⊂ Ca3. Below in this sections Φ ∈ K0. The orthogonality of Φi

means that
Re
(
Φi(ξ)Φi(η)

)
= Re(ξη̄), ξ, η ∈ Cai . (3.38)

In particular, Φi(ξ)Φi(ξ) = |ξ|2 and

Φi(ξ)−1 = Φi(ξ)/|ξ|2 . (3.39)

For η = ξ̄ from (1.39) one gets Φ1(ξ)Φ2(ξ̄) = Φ3(|ξ|2) = |ξ|2, so (3.39) implies
Φ1(ξ) = |ξ|2Φ2(ξ̄)−1 = Φ2(ξ̄) and

Φ1 = ι ◦ Φ2 ◦ ι . (3.40)

Let Q1(ξ, η) := Re(ξη), ξ ∈ Ca1, η ∈ Ca2. From (3.38) and (3.40) we get:

Q1(Φ1(ξ),Φ2(η)) = Re(Φ1(ξ)Φ2(η)) = Re(Φ1(ξ)Φ1(η̄)) = Re(ξη̄) = Q1(ξ, η) .

Thus, the form Q1(ξ, η) is invariant w.r.t. the K0-action.
From Propositions 1.8 and 1.9 it follows that Φ1 = gL,Φ2 = gR,Φ3 =

ι ◦ gV ◦ ι = gV , where gL, gR, gV are respectively left spinor, right spinor
and vector representation of the group K0 � Spin(7), since ι |Ca′

3
= − id.

Besides, the K0-action on Im(ξη), ξ ∈ Ca1, η ∈ Ca2 equals gV , so the form
Q2(ξ, η, ζ) := Re (Im(ξη)ζ) is invariant under K0-action for ζ ∈ Ca′

3.
Due to the identification X2(ξ) with Y2(ξ) in accordance with the formula

[Y2(ξ), E1] = X2(ξ) one can identify the K0-action on p∗λ
∼= Ca2 with opera-

tors Φ2.1 Similarly, due to formulas adY1(ξ) (X3(1)) = −X2(ξ̄), [Y3(ξ), E1] =
−X3(ξ) one can identify the K0-action on k∗λ

∼= Ca1 with operators ı◦Φ2 ◦ ı =
Φ1 and K0-action on p∗2λ

∼= Ca′
3 with operators Φ3. The K0-action on k∗2λ

is equivalent to the Φ3-action on another examples of Ca′
3. Any invariant of

K0-action on Ca1 ⊕Ca2 ⊕Ca′
3 ⊕Ca′

3 is naturally identified with K0-invariant
elements from

S ((Ca1 ⊕ Ca2 ⊕ Ca′
3 ⊕ Ca′

3)
∗) ∼= S (pλ ⊕ kλ ⊕ p2λ ⊕ k2λ) .

Therefore, the analogue of the invariant Im(ξη), ξ ∈ Ca1, η ∈ Ca2 is
∑

i
=j

f∗
λ,ie

∗
λ,ēj

⊗ eiej ∈ S(pλ ⊕ kλ ⊕ p2λ ⊕ k2λ) ⊗ Ca,

1 See the footnote on page 20.
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where e∗λ,i, f
∗
λ,i are elements from S (pλ ⊕ kλ ⊕ p2λ ⊕ k2λ), corresponding to

elements eλ,i, fλ,i ∈ pλ ⊕ kλ ⊕ p2λ ⊕ k2λ, like in Sect. 2.1.2.
Thus, the invariant Q2 corresponds to the following invariant element from

the algebra S(pλ ⊕ kλ ⊕ p2λ ⊕ k2λ)
∑

i
=j

f∗
λ,ie

∗
λ,ēj

e∗2λ,eiej
=
∑

i
=j

f∗
λ,ie

∗
λ,je

∗
2λ,eiēj

.

Therefore, one can define the invariant differential operator:

D7 = −1
4

∑

i
=j

{
{fλ,i, eλ,j} , e2λ,eiēj

}
=

1
4

∑

i
=j

{
{fλ,j , eλ,i} , e2λ,eiēj

}
,

since for i 
= j, it holds ej ēi = −ej ēi = −eiēj .
Substitution e2λ,eiēj

→ f2λ,eiēj
gives the invariant differential operator:

D8 = −1
4

∑

i
=j

{
{fλ,i, eλ,j} , f2λ,eiēj

}
=

1
4

∑

i
=j

{
{fλ,j , eλ,i} , f2λ,eiēj

}
.

It is clear that (1.39) remains valid after the cyclic permutation of indices
1, 2, 3 since the definition of the group K ′ is symmetric w.r.t. this permutation.
Therefore, one gets

Φ3(ζ)Φ1(ξ) = Φ2(ζξ), Φ2(η)Φ3(ζ) = Φ1(ηζ), ξ ∈ Ca1, η ∈ Ca2, ζ ∈ Ca′
3 .

(3.41)

Define the function

P (ξ, η, ζ1, ζ2) := Re(ζ1ξ · ηζ2), ξ ∈ Ca1, η ∈ Ca2, ζ1, ζ2 ∈ Ca′
3 .

It is invariant w.r.t. the K0-shifts, since due to (3.41), (3.40) and (3.38) it
holds:

P (Φ1(ξ),Φ2(η),Φ3(ζ1),Φ3(ζ2)) = Re (Φ3(ζ1)Φ1(ξ) · Φ2(η)Φ3(ζ2))

= Re
(
Φ2

(
ζ1ξ
)

Φ1

(
ηζ2

))

= Re
(
Φ1 (ζ1ξ) Φ1

(
ηζ2

))

= Re
(
ζ1ξ · ηζ2

)
= P (ξ, η, ζ1, ζ2) .

Functions P (ξ, η, ζ1, ζ2) and P (ξ, η, ζ2, ζ1) depend from each other and
invariants of the second order. Indeed, the corollary 15.12 in [2] gives:

Re(ab·c) = Re(bc·a) = Re(ca·b) = Re(a·bc) = Re(b·ca) = Re(c·ab), a, b, c ∈ Ca.

Therefore, using the Moufang identity (1.31), one gets

P (ξ, η, ζ, ζ) = Re(ζ · ξη · ζ) = Re(ζ2 · ξη)
= −Re(|ζ|2ξη) = −|ζ|2 Re(ξη) = −|ζ|2Q1(ξ, η) . (3.42)
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This means that for ζ1 = ζ2 = ζ the invariant P (ξ, η, ζ, ζ) is expressed through
invariants of the second order. Using the polarization of (3.42) w.r.t. ζ, i.e.,
the substitution ζ = ζ1 + ζ2, we get:

P (ξ, η, ζ1, ζ2) + P (ξ, η, ζ2, ζ1) = −2〈ζ1, ζ2〉Q1(ξ, η).

This implies the dependence of two invariants P (ξ, η, ζ1, ζ2), P (ξ, η, ζ2, ζ1) and
the invariants Q1(ξ, η), 〈ζ1, ζ2〉 of the second order. The last two invariants
correspond to operators D3 and D6.

For constructing the invariant differential operator D9 we shall use the
invariant function

P (ξ, η, ζ1, ζ2) − P (ξ, η, ζ2, ζ1) .

Using
∑

k eλ,ēk
⊗ ek as the analog of η one gets the corresponding expression

from S(pλ ⊕ kλ ⊕ p2λ ⊕ k2λ):

∑

i�=j
j �=k

(
f∗
2λ,ej ēi

f∗
λ,ie

∗
λ,ēk

e∗2λ,ēk ēj
− e∗2λ,ej ēi

f∗
λ,ie

∗
λ,ēk

f∗
2λ,ēk ēj

)

=
∑

i�=j
j �=k

(
e∗2λ,eiēj

f∗
λ,ie

∗
λ,kf∗

2λ,ek ēj
− f∗

2λ,eiēj
f∗

λ,ie
∗
λ,ke∗2λ,ek ēj

)

again due to ej ēi = −eiēj for i 
= j.
Define the corresponding invariant differential operator as

D9 =
1
8

∑

i�=j
j �=k

({{
e2λ,eiēj

, fλ,i

}
,
{
f2λ,ek ēj

, eλ,k

}}

−
{{

e2λ,eiēj
, eλ,i

}
,
{
f2λ,ek ēj

, fλ,k

}})
.

Let us show that there are exactly 9 independent K0-invariants in S(pλ ⊕
kλ ⊕ p2λ ⊕ k2λ).

Indeed, it holds dim(pλ ⊕ kλ ⊕ p2λ ⊕ k2λ) = 8 + 8 + 7 + 7 = 30 and
dim K0 = dim Spin(7) = 21. Therefore, the codimension of K0-orbits in the
space pλ ⊕ kλ ⊕ p2λ ⊕ k2λ is at least 30 − 21 = 9 and there should be at least
9 independent K0-invariants in the algebra S(pλ ⊕ kλ ⊕ p2λ ⊕ k2λ).

From another hand, it is obvious that the stationary subgroup of the group
Spin(7), acting in the space p2λ ⊕ k2λ by the representation gV ⊕ gV , that
corresponds to a point in general position is Spin(5). Therefore, the dimension
of general Spin(7)-orbits in p2λ ⊕ k2λ is dim Spin(7) − dim Spin(5) = 11. The
group Spin(5) is isomorphic to UH(2), see [2], proposition 5.1. In Sect. 3.2.1
the six independent invariants of the diagonal UH(2)-action in H

2 ⊕ H
2 �

pλ ⊕ kλ were found, so general orbits of the last action are 10-dimensional,
since dimR(H2⊕H

2)−6 = 10. Thus, general Spin(7)-orbits in pλ⊕kλ⊕p2λ⊕k2λ

are 11 + 10 = 21-dimensional, their codimension is 9 and there are exactly 9
functionally independent invariants of Spin(7)-action in pλ ⊕ kλ ⊕ p2λ ⊕ k2λ.

It is not known if there are any other invariants of this action, which
are polynomial in eλ,i, fλ,i, e2λ,α, f2λ,α and are not polynomial in D0, . . . , D9.
Such invariants if exist should be connected with D0, . . . , D9 by an algebraic
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nonlinear equation. In the case of Pn(H)S, n � 3 there is such invariant D10

and its square D2
10 is polynomial in D0, . . . , D9. The operator D10 arises in

commutator relations of D1, . . . , D9.
In the next section it will be found that all commutators of operators

D0, . . . , D9 in the octonionic case are polynomial in D0, . . . , D9. Therefore, it
seems to be probable in the octonionic case that there is no an analogue of
the operator D10, independent on D0, . . . , D9.

The rigorous proof of the completeness of the system of invariants D0, · · · ,
D9 seems to be a difficult problem as many problems in invariant theory [202].
In any case operators D0, · · · ,D9 generate the subalgebra of DiffI

(
P2(Ca)S

)
.

It is easily verified that automorphisms ζα, σ act on D7,D8,D9 as

ζα(D7) = cos(α)D7 − sin(α)D8, ζα(D8) = sin(α)D7 + cos(α)D8,

ζα(D9) = D9, σ(D7) = D7, σ(D8) = −D8, σ(D9) = D9.

Similarly to the previous sections, in order to get the generators of the
algebra DiffI(H2(Ca)S) one can use Proposition 1.5 and make the formal
substitution:

Λ → iΛ, eλ,i → ieλ,i, fλ,i → fλ,i, e2λ,α → ie2λ,α, f2λ,α → f2λ,α.

This substitution produces the corresponding substitution for the generators
D0, . . . , D9:

D0 → iD̄0, D1 → −D̄1, D2 → D̄2, D3 → iD̄3, D4 → −D̄4,

D5 → D̄5, D6 → iD̄6, D7 → −D̄7, D8 → iD̄8, D9 → −D̄9 .
(3.43)

The operators D̄0, . . . , D̄9 generate the algebra DiffI(H2(Ca)S).

3.5.2 Relations in Algebras DiffI

(
P2(Ca)S

)
and DiffI

(
H2(Ca)S

)

Below there are all 45 commutator relations for operators D0, . . . , D9. An ex-
ample of calculation of such relation is in appendix A. All methods described
in Sect. 3.2.2 for calculating commutator relations were used in this case. Be-
sides, the numeration of the base elements eλ,i, fλ,i, e2λ,α, f2λ,α by octonionic
units ei, i = 0, . . . , 7 is very convenient.

[D0,D1] = −D3, [D0,D2] = D3, [D0,D3] =
1
2
(D1 − D2), [D0,D4] = −2D6,

[D0,D5] = 2D6, [D0,D6] = D4 − D5, [D0,D7] = −D8, [D0,D8] = D7,

[D0,D9] = 0, [D1,D2] = −{D0,D3} − 2D7, [D1,D3] = −1
2
{D0,D1} + D8

+ 10D0, [D1,D4] = 2D7, [D1,D5] = 0, [D1,D6] = D8,

[D1,D7] =
1
2
{D1,D2 − D4} − D9 −

1
2
{D3,D6}

− D2
3 − 5D2

0 − 3
32

D1 −
283
32

D2 +
19
2

D4 −
1
2
D5,
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[D1,D8] = −1
2
{D3,D5} −

1
2
{D1,D6} + 10D6 +

35
4

D3,

[D1,D9] =
1
2
{D5,D7} −

1
2
{D6,D8} −

189
32

{D0,D3} −
169
16

D7,

[D2,D3] =
1
2
{D0,D2} + D8 − 10D0, [D2,D4] = −2D7, [D2,D5] = 0,

[D2,D6] = −D8, [D2,D7] = −1
2
{D2,D1 − D4} + D9 −

1
2
{D3,D6}

+ D2
3 + 5D2

0 +
3
32

D2 +
283
32

D1 −
19
2

D4 +
1
2
D5,

[D2,D8] =
1
2
{D2,D6} −

1
2
{D3,D5} +

35
4

D3 − 10D6,

[D2,D9] = −1
2
{D5,D7} +

1
2
{D6,D8} +

189
32

{D0,D3} +
169
16

D7, [D3,D4] = 0,

[D3,D5] = 2D8, [D3,D6] = D7, [D3,D7] = −1
4
{D1 + D2,D6} + 10D6,

(3.44)

[D3,D8] =
1
2
{D1,D2} −

1
4
{D1 + D2,D5} − D9 − D2

3 − 5D2
0 − 143

32
(D1 + D2)

− 1
2
D4 +

19
2

D5, [D3,D9] =
1
2
{D4,D8} −

1
2
{D6,D7}

+
189
64

{D0,D1 − D2} −
169
16

D8, [D4,D5] = −2{D0,D6},

[D4,D6] = −{D0,D4} +
35
2

D0, [D4,D7] =
1
2
{D1 − D2,D4}

+
35
4

(D2 − D1), [D4,D8] =
1
2
{D1 − D2,D6} − {D0,D7},

[D4,D9] = −9{D0,D6}, [D5,D6] = {D0,D5} −
35
2

D0,

[D5,D7] = {D3,D6} + {D0,D8}, [D5,D8] = {D3,D5} −
35
2

D3,

[D5,D9] = 9{D0,D6}, [D6,D7] =
1
4
{D1 − D2,D6} +

1
2
{D3,D4}

+
1
2
{D0,D7} −

35
4

D3, [D6,D8] =
1
4
{D1 − D2,D5} +

1
2
{D3,D6}

− 1
2
{D0,D8} +

35
8

(D2 − D1), [D6,D9] =
9
2
{D0,D4 − D5},

[D7,D8] = −1
4
{D0, {D1,D2}} +

1
2
{D0,D

2
3} +

1
2
{D0,D9} +

1
4
{D1 − D2,D8}

+
1
4
{D0,D5} +

283
64

{D0,D1 + D2} −
175
2

D0 −
1
2
{D3,D7} + 5D3

0

+
1
4
{D0,D4}, [D7,D9] =

1
4
{{D0,D7},D6} +

1
8
{D2 − D1, {D4,D5}}

− 1
4
{{D0,D4},D8} +

1
4
{D1 − D2,D

2
6} −

1
2
{D0,D8} +

25
32

{D3,D6}

+
185
64

{D1 − D2,D4} +
17
8
{D1 − D2,D5} +

35 · 181
128

(D2 − D1),
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[D8,D9] = −1
4
{{D0,D6},D8} −

1
4
{D3, {D4,D5}} +

1
4
{{D0,D7},D5}

+
1
2
{D3,D

2
6} +

169
32

{D3,D5} +
45
64

{D1 − D2,D6} +
37
8
{D3,D4}

+
5
8
{D0,D7} −

35 · 177
64

D3 .

One can verify by direct calculations that all elements from ZDiffI(P2(Ca)S)
of degrees � 4 are linear combinations of elements C1, C

2
1 and C2, where

C1 = D2
0 + D1 + D2 + D4 + D5,

C2 =
1
2
{D4,D5} − D2

6 − 2D9 +
189
16

(D1 + D2) +
5
4
(D4 + D5) .

Using substitution (3.43) one can obtain from relations above the commu-
tator relations for the algebra DiffI(H2(Ca)S):

[D̄0, D̄1] = D̄3, [D̄0, D̄2] = D̄3, [D̄0, D̄3] =
1
2
(D̄1 + D̄2), [D̄0, D̄4] = 2D̄6,

[D̄0, D̄5] = 2D̄6, [D̄0, D̄6] = D̄4 + D̄5, [D̄0, D̄7] = D̄8, [D̄0, D̄8] = D̄7,

[D̄0, D̄9] = 0, [D̄1, D̄2] = −{D̄0, D̄3} − 2D̄7, [D̄1, D̄3] = −1
2
{D̄0, D̄1} − D̄8

− 10D̄0, [D̄1, D̄4] = −2D̄7, [D̄1, D̄5] = 0, [D̄1, D̄6] = −D̄8,

[D̄1, D̄7] = −1
2
{D̄1, D̄2 + D̄4} + D̄9 +

1
2
{D̄3, D̄6} + D̄2

3 + 5D̄2
0 +

3
32

D̄1

− 283
32

D̄2 −
19
2

D̄4 −
1
2
D̄5, [D̄1, D̄8] =

1
2
{D̄3, D̄5} −

1
2
{D̄1, D̄6}

− 10D̄6 −
35
4

D̄3, [D̄1, D̄9] = −1
2
{D̄5, D̄7} +

1
2
{D̄6, D̄8}

+
189
32

{D̄0, D̄3} +
169
16

D̄7, [D̄2, D̄3] =
1
2
{D̄0, D̄2} + D̄8 − 10D̄0,

[D̄2, D̄4] = −2D̄7, [D̄2, D̄5] = 0, [D̄2, D̄6]=−D̄8, [D̄2, D̄7]=−1
2
{D̄2, D̄1 − D̄4}

+ D̄9 −
1
2
{D̄3, D̄6} + D̄2

3 + 5D̄2
0 − 3

32
D̄2 +

283
32

D̄1 −
19
2

D̄4 −
1
2
D̄5,

[D̄2, D̄8] =
1
2
{D̄2, D̄6} −

1
2
{D̄3, D̄5} +

35
4

D̄3 − 10D̄6,

[D̄2, D̄9] = −1
2
{D̄5, D̄7} +

1
2
{D̄6, D̄8} +

189
32

{D̄0, D̄3} +
169
16

D̄7, [D̄3, D̄4] = 0,

[D̄3, D̄5] = 2D̄8, [D̄3, D̄6] = D̄7, [D̄3, D̄7] = −1
4
{D̄1 − D̄2, D̄6} − 10D̄6,

(3.45)

[D̄3, D̄8] =
1
2
{D̄1, D̄2} −

1
4
{D̄1 − D̄2, D̄5} − D̄9 − D̄2

3 − 5D̄2
0

− 143
32

(D̄1 − D̄2) −
1
2
D̄4 −

19
2

D̄5, [D̄3, D̄9] =
1
2
{D̄4, D̄8}

− 1
2
{D̄6, D̄7} +

189
64

{D̄0, D̄1 + D̄2} +
169
16

D̄8,
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[D̄4, D̄5] = −2{D̄0, D̄6}, [D̄4, D̄6] = −{D̄0, D̄4} −
35
2

D̄0,

[D̄4, D̄7] =
1
2
{D̄1 + D̄2, D̄4} +

35
4

(D̄2 + D̄1),

[D̄4, D̄8] =
1
2
{D̄1 + D̄2, D̄6} − {D̄0, D̄7},

[D̄4, D̄9] = 9{D̄0, D̄6}, [D̄5, D̄6] = {D̄0, D̄5} −
35
2

D̄0, [D̄5, D̄7] = {D̄3, D̄6}

+ {D̄0, D̄8}, [D̄5, D̄8] = {D̄3, D̄5} −
35
2

D̄3, [D̄5, D̄9] = 9{D̄0, D̄6},

[D̄6, D̄7] =
1
4
{D̄1 + D̄2, D̄6} +

1
2
{D̄3, D̄4}

+
1
2
{D̄0, D̄7} +

35
4

D̄3, [D̄6, D̄8] =
1
4
{D̄1 + D̄2, D̄5} +

1
2
{D̄3, D̄6}

− 1
2
{D̄0, D̄8} −

35
8

(D̄2 + D̄1), [D̄6, D̄9] =
9
2
{D̄0, D̄4 + D̄5},

[D̄7, D̄8] = −1
4
{D̄0, {D̄1, D̄2}} +

1
2
{D̄0, D̄

2
3} +

1
2
{D̄0, D̄9} +

1
4
{D̄1 + D̄2, D̄8}

− 1
4
{D̄0, D̄5} +

283
64

{D̄0, D̄1 − D̄2} +
175
2

D̄0 −
1
2
{D̄3, D̄7} + 5D̄3

0

+
1
4
{D̄0, D̄4}, [D̄7, D̄9] =

1
4
{{D̄0, D̄7}, D̄6} −

1
8
{D̄2 + D̄1, {D̄4, D̄5}}

− 1
4
{{D̄0, D̄4}, D̄8} +

1
4
{D̄1 + D̄2, D̄

2
6} +

1
2
{D̄0, D̄8}

− 25
32

{D̄3, D̄6} +
185
64

{D̄1 + D̄2, D̄4} −
17
8
{D̄1 + D̄2, D̄5}

+
35 · 181

128
(D̄2 + D̄1), [D̄8, D̄9] = −1

4
{{D̄0, D̄6}, D̄8}

− 1
4
{D̄3, {D̄4, D̄5}} +

1
4
{{D̄0, D̄7}, D̄5}

+
1
2
{D̄3, D̄

2
6} −

169
32

{D̄3, D̄5} +
45
64

{D̄1 + D̄2, D̄6}

+
37
8
{D̄3, D̄4} +

5
8
{D̄0, D̄7} +

35 · 177
64

D̄3 .

The analogs in ZDiffI(H2(Ca)S) of operators C1 and C2 are

C1 = D̄2
0 + D̄1 − D̄2 + D̄4 − D̄5,

C2 =
1
2
{D̄4, D̄5} − D̄2

6 − 2D̄9 +
189
16

(D̄1 − D̄2) +
5
4
(D̄4 − D̄5) .

3.6 The Kernel of the Operator D0

The theorem below concerns the kernel of the operator D0, constructed above
for all two-point homogeneous Riemannian spaces.

Theorem 3.1 ([168]). Let Q be a two-point homogeneous Riemannian space
and G be the identity component of the isometry group for Q. For every smooth
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vector field v on Q define a function fv on QS by the following formula:

fv(y) = ĝ(v(x), ξ) ≡ 〈v(x), ξ〉,

where x ∈ Q, ĝ(·, ·) ≡ 〈·, ·〉 is the Riemannian metric on Q, ξ ∈ TxQ, 〈ξ, ξ〉 =
1, y = (x, ξ) ∈ QS. Let D0 ∈ DiffG(QS) be the differential operator con-
structed in section 3.1 (for the noncompact case see proposition 1.5). For every
element X ∈ g denote by X̃ the corresponding Killing vector field on Q. Then
the identity D0fv ≡ 0 on QS is equivalent to the equality v = X̃ for some
X ∈ g.

This theorem for the case Q = Hn(R) was formulated and proved in [146]
by the explicit coordinate calculations. The proof below valid in the general
case is more conceptual.

Proof. Choose an arbitrary point x0 ∈ Q and let e0 = 1
R Λ̃(x0) ∈ Tx0Q, where

Λ and R are from Proposition 1.4. Then 〈e0, e0〉 = 1. The space QS is the
G-orbit Gy0, where y0 = (x0, e0) ∈ QS.

The action of D0 on fv can be written in the following way (see (2.7)):

(D0fv)(gy0) =
d

dt

∣
∣
∣
∣
t=0

fv (g exp(tΛ)y0) , g ∈ G.

Therefore,

(D0fv)(gy0) =
d

dt

∣
∣
∣
∣
t=0

〈v (g exp(tΛ)x0) , g exp(tΛ)e0〉

=
d

dt

∣
∣
∣
∣
t=0

〈

v
(
g exp(tΛ)g−1gx0

)
, g exp(tΛ)

d

dµ

∣
∣
∣
∣
µ=0

exp(µΛ)x0

〉

=
d

dt

∣
∣
∣
∣
t=0

〈

v (exp(t Adg Λ)gx0) ,
d

dµ

∣
∣
∣
∣
µ=0

exp(t Adg Λ) exp(µAdg Λ)gx0

〉

=
d

dt

∣
∣
∣
∣
t=0

〈

v (exp(t Adg Λ)gx0) ,
d

dµ

∣
∣
∣
∣
µ=0

exp(µAdg Λ) exp(t Adg Λ)gx0

〉

.

Due to the transitivity of G-action on QS the point y := (x, e) :=
(gx0, Ãdg Λ|gx0) can be considered as an arbitrary one. Denote W = Adg Λ.
Then one gets

(D0fv)(y) =
d

dt

∣
∣
∣
∣
t=0

〈
v (exp(tW )x) , W̃ (exp(tW )x)

〉
= £

W̃
ĝ(v(x), W̃ (x)),

where £X is the Lie derivative along the vector field X. The vector field W̃
is Killing, so £

W̃
ĝ = 0 and

D0fv = ĝ(£
W̃

v, W̃ ) + ĝ(v,£
W̃

W̃ ) = ĝ(£
W̃

v, W̃ ) = −ĝ(£vW̃ , W̃ )

=
1
2

(£v ĝ) (W̃ , W̃ ) − 1
2
£v

(
ĝ(W̃ , W̃ )

)
=

1
2

(£v ĝ) (W̃ , W̃ ) ,
(3.46)
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due to ĝ(W̃ (x), W̃ (x)) = ĝ(gΛ̃(x0), gΛ̃(x0)) = ĝ(Λ̃(x0), Λ̃(x0)) = R2 and
£XY = [X,Y ]. The element W̃ ∈ TxQ is arbitrary, therefore from (3.46)
one sees that the condition D0fv = 0 is equivalent to the equality £v ĝ = 0.
This means that v is a Killing vector field and has the form v = X̃ for some
X ∈ g if and only if D0fv ≡ 0. ��



4

Hamiltonian Systems with Symmetry
and Their Reduction

In this chapter we shall give a brief description of classical Hamiltonian me-
chanics with symmetry, emphasizing the mechanics on cotangent bundles, the
Hamiltonian reduction, the commutative and noncommutative integrability
and the transition from quantum mechanics to classical one. Another purpose
of this chapter is to fix some notations. Until indicated otherwise, the material
of this chapter is quite standart and different parts of it could be found in
[8, 32, 58, 193, 200] and many other sources. It will be used below in Chaps.
6 and 7 for studying the classical one- and two-body problems on two-point
homogeneous Riemannian spaces.

4.1 Basic Facts from Hamiltonian Mechanics

A vector field X on a smooth manifold M is called complete [92] if the corre-
sponding local one-parameter group of diffeomorphisms of M is global. Recall
that a smooth manifold M endowed with a closed nondegenerate 2-form ω is
called symplectic and the form ω is called a symplectic structure. A symplectic
manifold is necessarily even-dimensional. An every smooth function h on M
defines the Hamiltonian vector field Xh on M such that

dh = ω(·,Xh) ≡ −iXh
ω, (4.1)

where iXω is the contraction of the vector field X and the form ω. The func-
tion h is conserved by the flow, generated by the field Xh, and is called the
Hamiltonian function with respect to this Hamiltonian flow and the corre-
sponding Hamiltonian system of differential equations of the first order. Thus,
the Hamiltonian system is the triple (M,ω, h). In mechanics the manifold M
is called the phase space.

The form ω is conserved by any Hamiltonian flow. Indeed,

£Xh
ω = d ◦ iXh

ω + iXh
◦ dω = −d ◦ dh + iXh

0 = 0 , (4.2)

where we used the Cartan formula [32, 143]:

£Xω′ = (d ◦ iX + iX ◦ d)ω′, (4.3)

valid for every vector field X and every differential form ω′.

A.V. Shchepetilov: Calculus and Mechanics on Two-Point Homogeneous Riemannian Spaces,
Lect. Notes Phys. 707, 87–111 (2006)
DOI 10.1007/3-540-35386-0 4 c© Springer-Verlag Berlin Heidelberg 2006
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For two smooth functions f and g on M their Poisson brackets are

[f, h]P := −ω(Xf ,Xh) = −dh(Xf ) = df(Xh) . (4.4)

Obviously, it holds [f, g]P = −[g, f ]P and [f, f ]P = 0. Functions f and h are in
involution if [f, g]P = 0 or, equivalently, if f is an integral for the Hamiltonian
vector field Xh, i.e., if f is constant along trajectories of the flow, generated
by Xh. In this case h is also an integral for the Hamiltonian vector field Xf .

Proposition 4.1. The vector field [Xf ,Xh] is Hamiltonian with the Hamil-
tonian function −[f, h]P . Poisson brackets satisfy the Jacobi identity

[f, [g, h]P ]P + [h, [f, g]P ]P + [g, [h, f ]P ]P = 0 (4.5)

and the Leibniz rule

[f, gh]P = [f, g]P h + g[f, h]P , (4.6)

where f, g, h ∈ C∞(M).

Proof. The identity
i[X,Y ] = [£X , iY ]

for arbitrary smooth vector fields X and Y is well known in calculus on mani-
folds [32, 143]. Therefore, using (4.2) and the Cartan formula (4.3) once again,
one gets:

i[Xf ,Xh]ω = £Xf
◦ iXh

ω − iXh
◦ £Xf

ω = d ◦ iXf
◦ iXh

ω + iXf
◦ d ◦ iXh

ω

= d (ω(Xh,Xf )) − iXf
◦ d ◦ dh = d[f, h]P

that proves the first claim of the proposition. Further from (4.4) and the first
claim it follows:

[f, [g, h]P ]P + [g, [h, f ]P ]P = Xf ◦ Xgh − Xg ◦ Xfh

= [Xf ,Xg]h = −X[f,g]P h = −[h, [f, g]P ]P

that proves the second claim. At last

[f, gh]P = −Xf (gh) = −Xf (g)h − gXf (h) = [f, g]P h + g[f, h]P .

��

Definition 4.1. A Poisson algebra A is a commutative associative algebra en-
dowed with a bilinear skew-symmetric operation satisfying the Jacobi identity
and the Leibniz rule.

Thus, we see that the algebra C∞(M) is Poisson with respect to the
brackets [·, ·]P . Neglecting pointwise multiplication in C∞(M) one obtains
an infinite dimensional Lie algebra and the map h → Xh, h ∈ C∞(M) is an
antihomomorphism onto the Lie algebra of Hamiltonian vector fields on M .
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Definition 4.2. A Hamiltonian system (M,ω, h) is called completely inte-
grable (in commutative sense) if there are n = 1

2 dim M smooth functions
f1 = h, f2, . . . , fn on M such that

1. they are in the involution: [fi, fj ]P = 0;
2. the differential forms dfi, i = 1, . . . , n are linearly independent at every

point of some open dense subset M ′ ⊂ M .

Theorem 4.1 (Arnold-Liouville, [8, 32]). Let (M,ω, h) be a completely
integrable Hamiltonian system with integrals f1 = h, f2, . . . , fn. Let also c ∈
R

n be a regular value of the map f := (f1, . . . , fn) : M → R
n.1 Then

1. the corresponding level set Mc = f−1(c) is a smooth Lagrangian subman-
ifold of M , i.e., it is n-dimensional and ω|Mc

= 0;
2. any compact connected component of Mc is diffeomorphic to the torus T

n

and the vector fields Xf1 , . . . , Xf1 on it are complete;
3. if the Hamiltonian flows of the vector fields Xf1 , . . . , Xf1 starting at a point

x ∈ Mc are complete, then the connected component of Mc containing x is
a homogeneous space for the additive group R

n and the flows of the vector
fields Xf1 , . . . , Xf1 are linear w.r.t. corresponding coordinates ϕ1, . . . , ϕn,
known as angle coordinates.

The concept of the noncommutative integrability was firstly introduced in
[123] for Lie algebras of integrals. For nonlinear algebras it was later gener-
alized in [29]. This concept is more general than Definition 4.2. Firstly, we
shall formulate the analytic version of this concept, which is preliminary for
the geometric one. Here we follow [23] and [24].

Let F be a subalgebra of the Poisson algebra C∞(M), functionally
generated by functions f1, . . . , fl. Suppose that 1-forms df1, . . . , dfl are lin-
early independent at every point of an open dense subset M ′ ⊂ M and
rank ‖[fi, fj ]P ‖ =: l − r = const everywhere in M ′.

Theorem 4.2 ([23, 24]). Let l + r = dimM = 2n and let c ∈ R
l be a

regular value of the map f : M → (f1, . . . , fl) ∈ R
l, existing due to the

independence of df1, . . . , dfl on M ′. Suppose that a Hamiltonian function h ∈
C∞(M) commutes with the algebra F . Then

1. Mc = f−1(c) is an isotropic (i.e., ω|Mc
= 0) r-dimensional submanifold

of M,
2. the Hamiltonian system with the Hamiltonian function h is completely

integrable in the sense of Definition 4.2,
3. a compact connected component T r

c of Mc is diffeomorphic to a r-dimensio-
nal torus. In some neighborhood U of T r

c there are generalized action-angle
variables yi, xi, Ii and ϕi mod 2π such that

ω|U =
r∑

i=1

dIi ∧ dϕi +
n−r∑

i=1

dyi ∧ dxi

1 Contrary to the agreement in the Sard theorem [143] we call c ∈ R
n a regular

value of the map f iff the set f−1(c) is nonempty and im dxf = R
n, ∀x ∈ f−1(c),

since the empty set is not interesting in mechanics as a phase space.
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and the function h depends only on variables Ii, i = 1, . . . , r. The invariant
tori in U corresponding to other regular values of f are given as the level
sets of integrals Ii, yj , xk. The Hamiltonian equations for the function h
on T r

c are

ϕ̇i =
∂h

∂Ii
, i = 1, . . . , r .

Under the assumptions of this theorem the Hamiltonian system corre-
sponding to the function h is called completely integrable in noncommutative
sense. In the case r = l = n this theorem is equivalent to Theorem 4.1.

Below we shall use the following theorem about a map of a constant rank.
This theorem appears in different forms. The first form can be found in [40]
(10.3.1) for linear spaces, but due to its local character, it is valid also for
manifolds.

Theorem 4.3. Let N1 and N2 be smooth manifolds and f : N1 → N2 be a
smooth map such that in some neighborhood U of a point x0 ∈ N1 the rank of
f is constant:

rk f |U := rk dxf |x∈U = k = const .

Then there are local coordinates x1, . . . , xn in some neighborhood U ′ ⊂ U
and y1, . . . , ym in some neighborhood V ′ ⊂ N2 of the point f(x0) such that
f(U ′) ⊂ V ′ and the map f |U ′ acts by the formula:

f(x1, . . . , xn) = (y1, . . . , ym) = (x1, . . . , xk, 0, . . . , 0) .

Another version of this result is as follows.

Theorem 4.4. Let f1, . . . , fm be smooth functions on a smooth manifold N
such that

dim span(dfi, i = 1, . . . ,m) = dim span(dfi, i = 1, . . . , k) = k, k < m

in an open set U ⊂ N . Then for some C1 functions Fi on R
k it holds

fi = Fi(f1, . . . , fk), i = k + 1, . . . , m

in some open set U ′ ⊂ U .

For N being a linear space this theorem can be found in [157] (III,9;33)
and [172] (Sect. 1.74), but again due to its local character, it is valid also for
N being a smooth manifold.

Definition 4.3. Let F be a subalgebra of the Poisson algebra C∞(M) and
regF be an open dense subset in M such that

1. ddimF := dim span (dxf, f ∈ F) = const, x ∈ regF ;
2. the kernel of the Poisson structure [·, ·]P restricted onto span (dxf, f ∈ F)

has a constant dimension dindF on regF .

The numbers ddimF and dindF are called respectively differential dimension
and differential index of F . The algebra F is called complete if

ddimF + dindF = dimM .
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Remark 4.1. For the algebra F from Definition 4.3 denote by WF (x) the
linear subspace of TxM , consisting of elements Xf |x , f ∈ F . Obviously, it
holds

ddimF = dimWF (x), dindF = dim (WF (x) ∩ WF (x)ω) , x ∈ regF ,

where WF (x)ω is the subspace in TxM , skew-orthogonal to WF (x) w.r.t. the
symplectic form ω. Since

dindF � dim WF (x)ω = dimM − dim WF (x),

one has
ddimF + dindF � dim M

and the algebra F is complete iff WF (x)ω ⊂ WF (x), x ∈ regF , in other words
iff spaces WF (x), x ∈ regF are coisotropic.

The existence of a complete algebra of integrals is connected with the
noncommutative integrability. Indeed, let h ∈ C∞(M) and [h,F ]P = 0 for a
complete algebra F ⊂ C∞(M). Let x0 ∈ regF . There are a neighborhood U
of x0 and functions f1, . . . , fk ∈ F , k = ddimF such that dim span(dfi, i =
1, . . . , k) = k on U . According to Theorem 4.4 there is some neighborhood
U ′ ⊂ U of x0 such that

[fi, fj ]P = aij(f1, . . . , fk) (4.7)

on U ′ for smooth functions aij on R
k. Suppose that the Hamiltonian flow φh

t ,
corresponding to the function h, is a global one at least for points from U ′.
Let

V :=
⋃

t∈R

φh
t (U ′) .

Since the differential form df1 ∧ . . . ∧ dfk and relations (4.7) are invariant
w.r.t. the flow φh

t , we obtain that functions f1, . . . , fk are independent on V
and satisfy (4.7) on V . Therefore, the restriction of the Hamiltonian function
h onto V obeys the conditions of Theorem 4.2. This motivates the following
final definition of complete integrability in noncommutative sense.

Definition 4.4. A Hamiltonian system is completely integrable in the non-
commutative sense if it admits a complete algebra of integrals.

In Sect. 6.1 we shall prove the noncommutative integrability of the one-
particle motion in a central field on two-point homogeneous spaces.

4.2 Hamiltonian Mechanics with Symmetry

4.2.1 The Poisson Structure on the Algebra S(g)

The presence of a continuous symmetry for Hamiltonian systems leads to the
existence of some integrals of motion, sometimes sufficient for commutative
or noncommutative integrability.
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Evidently, for any Lie algebra g the commutator [·, ·] in the universal
enveloping algebra U(g) obeys the Jacobi identity and the Leibniz rule.
Let U1(g) ⊂ U2(g) ⊂ . . . ⊂ U(g) be the standard filtration of the alge-
bra U(g) as in Sect. 2.1.2 and u ∈ Uk(g), v ∈ Ul(g). Then for elements
u + Uk−1(g), v + Ul−1(g) ∈ gr U(g) put

[u + Uk−1(g), v + Ul−1(g)]P := [u, v] + Uk+l−2(g).

This equality is well defined since

[u,Ul−1(g)] ⊂ Uk+l−2(g), [Uk−1(g), v] ⊂ Uk+l−2(g) .

Thus, one gets the Poisson brackets [·, ·]P for grU(g). Due to Theorem 2.1, the
algebras gr U(g) and S(g) are isomorphic and we obtain the Poisson brack-
ets on S(g). Obviously, for S1(g) = g these brackets coincide with the Lie
operation [·, ·] and can be uniquely extended onto the whole S(g) by the
linearity and the Leibniz rule. Note that for u ∈ Sk(g), v ∈ Sl(g) it holds
[u, v]P ∈ Sk+l−1(g).

To distinguish the commutative algebra S(g) and the same algebra en-
dowed with the Poisson structure constructed above, we denote it in the latter
case by Sp(g).

The algebra S(g) is naturally identified with the algebra P(g∗) of poly-
nomial functions on g∗, which is therefore Poisson. The Poisson structure is
extended from P(g∗) onto the algebra C∞(g∗) by the formula

[f, h]P =
dim g∑

l,k=1

∂f

∂xk

∂h

∂xl
[xk, xl]P =

dim g∑

l,k,i=1

∂f

∂xk

∂h

∂xl
ci
klxi, (4.8)

where f, h ∈ C∞(g∗); xk are coordinates on g∗, corresponding to a basis ek

in g and [ek, el] = ci
klei.

In fact, the Poisson algebra Sp(g) is the classical analogue for the algebra
U(g) and the brackets [·, ·]P inherit leading terms properties of the brackets
[·, ·] in U(g). The same arguments as in the proof of Proposition 2.2 give:

Proposition 4.2. Let G be a connected Lie group. The center Z Sp(g) of the
Poisson algebra Sp(g) (w.r.t. Poisson brackets) consists of AdG-invariant ele-
ments. Equivalently, the center ZP(g∗) of the Poisson algebra P(g∗) consists
of Ad∗

G-invariants.

Define the coadjoint action of the group G on the space g∗ by the formula
(
Ad∗

g f
)
(x) = f

(
Adg−1 x

)
, g ∈ G, x ∈ g, f ∈ g∗ . (4.9)

Note that in order to obtain the left Ad∗
G-action we denote here by Ad∗

g the
operator adjoint to Adg−1 . Denote by Yc the vector field on g∗, corresponding
to an element Y ∈ g with respect to Ad∗

G-action:

Yc|f =
d

dt

(
Ad∗

exp(tY ) f
)∣∣
∣
∣
t=0

, f ∈ g∗, i.e., Yc|f (X) = −f([Y,X]), X ∈ g .

(4.10)
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Obviously, vectors Yc|f , Y ∈ g span the tangent space TfO for an Ad∗
G- orbit

O, passing through f ∈ g∗.2

On the other hand, an element Y ∈ g defines the linear function Y # on
g∗ : Y #(f) := f(Y ), f ∈ g∗. Motivated by (4.4), one can define the Kirillov
2-form ω∗ on O:

ω∗(Y ∗, Z∗) := −[Y #, Z#]P := −[Y,Z]#, Y, Z ∈ g . (4.11)

The form ω∗ is well defined, since Yc|f = 0 iff [Y, g] ⊂ ker f . Similarly, if
ω∗(Yc, Zc)|f = 0, ∀Z ∈ g, then [Y, g] ⊂ ker f and Yc|f = 0. Hence the form
ω∗ is nondegenerate.

Using the well-known formula for the exterior derivative of a differential
form (see for example [92, 143]) and (2.1), one gets

dω∗(Tc, Yc, Zc) = Tc (ω∗(Yc, Zc)) − Yc (ω∗(Tc, Zc)) + Zc (ω∗(Tc, Yc))

− ω∗([Tc, Yc], Zc) + ω∗([Tc, Zc], Yc) − ω∗([Yc, Zc], Tc) = −Tc

(
[Y,Z]#

)

− Yc

(
[Z, T ]#

)
− Zc

(
[T, Y ]#

)
− ([[T, Y ], Z] + [[Z, T ], Y ] + [[Y,Z], T ])# ,

∀T, Y, Z ∈ g .

The sum in the last brackets vanishes due to the Jacobi identity in g. Thus,
from (4.10) one gets:

dω∗(Tc, Yc, Zc)|f = −Tc (f([Y,Z])) − Yc (f([Z, T ])) − Zc (f([T, Y ]))

= f ([T, [Y,Z]] + [Y, [Z, T ]] + [Z, [T, Y ]]) = f(0) = 0 .

Hence the form ω∗ is closed and it determines the symplectic structure on
O. It is easily seen that the Poisson structure on O, constructed according to
(4.4), is the restriction of Poisson structure on C∞(g∗) defined in (4.8). This
means that orbits of the Ad∗

G-action in g∗ are symplectic leaves of the Poisson
structure (4.8) (see for example [8, 193]).

Since the center of the Poisson algebra P(g∗) consists of Ad∗
G-invariants,

the center of Poisson algebra C∞(g∗) consists of functions, constant on all
Ad∗

G-orbits in g∗.

4.2.2 The Poisson Action and the Momentum Map

Definition 4.5. An action of a Lie group G on a symplectic manifold M is
called symplectic if it conserves the symplectic structure on M . Let

Ỹ
∣
∣
∣
x

=
d

dt
exp(tY )x

∣
∣
∣
∣
t=0

, Y ∈ g, x ∈ M

be a vector field on M , corresponding to an element Y ∈ g. A symplectic
action of a connected Lie group G is called Poisson if there is a homomorphism
µ∗ : g → C∞(M) of Lie algebras such that µ∗(Y ) is the Hamiltonian function
2 Due to Proposition 1.6 Ad∗

G-orbits does not depend on the choice of connected
Lie group G, corresponding to the fixed algebra g.



94 4 Hamiltonian Systems with Symmetry

of the vector field Ỹ on M for every element Y ∈ g. This homomorphism is
called a comomentum map and the map µ : M → g∗, defined by the equality
µ(x)(Y ) = µ∗(Y )(x) is called a momentum map.

Example. The Ad∗
G-action on any orbit O ⊂ g∗ is Poisson since the map

µ∗ : g → C∞(O, R), defined by the formula µ∗(Y ) = Y #|O, Y ∈ g, satisfies
Definition 4.5 due to (4.10) and (4.11).

Proposition 4.3 ([58, 200]). If a connected real Lie group G is semisimple
or at least cohomology groups H1(g, R),H2(g, R) vanish, then every symplectic
action of G is Poisson.

Since the Poisson algebra Sp(g) ∼= P(g∗) is freely generated by elements of
g, the map µ∗ is uniquely extended to the homomorphism of Poisson algebras
P(g∗) → C∞(M).

There is a natural topology in the algebra C∞(g∗), generated by seminorms

ρα,U (f) = sup
U

∣
∣
∣
∣
∂αf

∂xα

∣
∣
∣
∣ ,

where U is a compact subset of the linear space g∗, α is a multiindex and
xi, i = 1, . . . ,dim g are affine coordinates in g∗. The base of neighborhoods of
the null function from C∞(g∗) in this topology consists of sets

Wα,U,ε := (f ∈ C∞(g∗)| ρα,U (f) < ε) .

The algebra P(g∗) is dense in C∞(g∗) w.r.t. this topology and the
homomorphism µ∗ is uniquely extended to the continuous homomorphism
C∞(g∗) → C∞(M), for which we save the notation µ∗.

Let M be a symplectic manifold with a Poisson action of a connected Lie
group G.

Proposition 4.4. For every element g ∈ G the following diagram is commu-
tative

M
ψg−−−−→ M

µ



,



,µ

g∗
Ad∗

g−−−−→ g∗

(4.12)

where ψg is the action of g on M . In other words, µ is an equivariant map.
If Ỹ h = 0 on M for some element Y ∈ g and a function h ∈ C∞(M),

then µ∗(Y ) is an integral for the Hamiltonian system, corresponding to h.

Proof. Since a connected Lie group is generated by any neighborhood of its
unit [142, 201], it is enough to prove the commutativity of (4.12) for any one
parametric subgroup q(t) = exp(tY ), Y ∈ g, t ∈ R. In other words it is enough
to prove the equality

µ(q(t)x)(Z) = µ(x)
(
Adq(−t) Z

)
, ∀x ∈ M,∀Z ∈ g .

It is easily seen that the last equality is equivalent to the equality
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µ(q(t)x)
(
Adq(t) Z

)
= µ(x)(Z), ∀x ∈ M,∀Z ∈ g . (4.13)

From the definitions of µ, µ∗ and formula (4.4) one has:

d

dt

(
µ(q(t)x)

(
Adq(t) Z

))
=
(
Ỹ
(
µ∗ (Adq(t) Z

)))
(q(t)x)

+ µ(q(t)x)
([

Y,Adq(t) Z
])

=
[
µ∗ (Adq(t) Z

)
, µ∗(Y )

]
P

(q(t)x) +
[
µ∗(Y ), µ∗ (Adq(t) Z

)]
P

(q(t)x) = 0 .

Since µ(q(0)x)
(
Adq(0) Z

)
= µ(x)(Z), one gets (4.13) that completes the proof

of the commutativity of diagram (4.12). The second claim of the proposition
is evident since

[h, µ∗(Y )]P = Xµ∗(Y )h = Ỹ h = 0

due to (4.4) and the definition of µ∗. ��

Let Gx be a stationary subgroup of the group G, corresponding to a point
x ∈ M and Gf , f ∈ g∗ be a stationary subgroup of G, corresponding to
Ad∗

G-action and an element f ∈ g∗. Denote by gx and gf the corresponding
subalgebras. Due to (4.12) it holds Gx ⊂ Gµ(x) and gx ⊂ gµ(x).

One can express the differential of the map µ via symplectic structure.
Indeed, from (4.1) for ξ ∈ X (M) and ξ′ = ξ|x, x ∈ M one gets:

dxµ(ξ′)(Y ) = ξ (µ∗(Y ))|x = ω(ξ,Xµ∗(Y ))
∣
∣
x

= ω(ξ′, Ỹ )
∣
∣
∣
x

, Y ∈ g, (4.14)

where dx is the differential at a point x. Denote by g̃(x) the linear subspace
in TxM spanned by vectors Ỹ

∣
∣
∣
x

for all elements Y ∈ g. From formula (4.14)
one obtains that

ker dxµ = g̃(x)ω, (4.15)

where g̃(x)ω is the skew-orthogonal complement of g̃(x) in TxM with respect
to the form ω. Since ω is nondegenerate, one has

dim ker dxµ = dim M − dim g̃(x) .

Formula (4.14) implies that im dxµ ⊂ ann gx ⊂ g∗. Since dim im dxµ =
dim M − dim ker dxµ = dim g̃(x) = dim g − dim gx = dim ann gx, one gets

im dxµ = ann gx . (4.16)

4.2.3 From Momentum Map to Noncommutative Integrability

The momentum map gives a way for constructing complete Poisson algebras.
Let F1 := µ∗ (C∞(g∗)) and F2 be a subalgebra of the Poisson algebra

C∞(M), consisting of G-invariant functions. According to Definition 4.5 at
every point x ∈ M vector fields of the form Xf , f ∈ F1 span the space
g̃(x). Therefore, it holds Xf (F2) = 0, ∀f ∈ F1 and thus [F1,F2]P = 0. In
other words it holds ω (WF1(x),WF2(x)) = 0. Similarly, if [f,F1]P = 0 for
f ∈ C∞(M), then f is constant along G-orbits in M and f ∈ F2.

Summarize the consideration above in the following proposition
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Proposition 4.5. It holds ZF1 = F1 ∩ F2 ⊂ ZF2 and WF1(x) = g̃(x) ⊂
WF2(x)ω,WF2(x) ⊂ WF1(x)ω = g̃(x)ω for every point x ∈ M .

From here till the end of this section we make the following assumption,
concerning G-orbits in M .

Assumption 4.1. There is an open dense subset M ′ ⊂ M such that

1. it consists of G-orbits in M of a maximal dimension;
2. span(dxf, f ∈ F2) = ann (g̃(x)) , ∀x ∈ M ′ or equivalently WF2(x) =

g̃(x)ω, ∀x ∈ M ′.

Under this assumption it holds dim gx = const for x ∈ M ′ and due to
(4.16) the restriction of the map µ onto M ′ is a map of a constant rank. Due
to Theorem 4.3 the set µ−1(c) ∩ M ′ is a smooth manifold for every c ∈ g∗.

Obviously, WF1(x) = g̃(x) for x ∈ M ′ and due to Assumption 4.1
WF2(x) = g̃(x)ω = WF1(x)ω. Since (WF1(x)ω)ω = WF1(x), one obtains also
WF2(x)ω = WF1(x), x ∈ M ′. Thus, it holds

(WF1(x) + WF2(x))ω = WF1(x)ω ∩ WF2(x)ω = WF2(x) ∩ WF1(x), x ∈ M ′

(4.17)
and

WF1(x)ω∩WF1(x) = WF1(x)∩WF2(x) = WF2(x)ω∩WF2(x), x ∈ M ′. (4.18)

On the other hand, due to (4.15) one gets

WF1(x) ∩ WF2(x) = WF1(x) ∩ WF1(x)ω = g̃(x) ∩ g̃(x)ω = g̃(x) ∩ ker dxµ .

This means that elements of the space WF1(x)∩WF2(x) are in one-to-one cor-
respondence with elements from gµ(x) modulo gx, x ∈ M ′. One can conclude
that

dim (WF1(x) ∩ WF2(x)) = dim
(
gµ(x)/gx

)
, x ∈ M ′ .

The subset M ′ from Assumption 4.1 can play roles of regF1 and regF2.
Indeed, for every point x ∈ M ′ it holds

ddimF1 = dim im dxµ = dim g/gx, (4.19)

due to (4.16) and

ddimF2 = codim G · x = dimM − dim g/gx . (4.20)

Also, due to (4.18) and Remark 4.1:

dindF1 = dindF2 = dim (WF1(x) ∩ WF2(x)) = dim
(
gµ(x)/gx

)
, x ∈ M ′ .

(4.21)

Proposition 4.6. Let F := F1 + F2 be the Poisson algebra generated by F1

and F2. Since WF = WF1 + WF2 , this algebra is complete with regF = M ′

due to remark 4.1 and formula (4.17).
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One can see the completeness of F also by direct calculations:

ddimF + dindF = dimWF1(x) + dim WF2(x) − dim (WF1(x) ∩ WF2(x))
+ dim ((WF1(x) + WF2(x))ω ∩ (WF1(x) + WF2(x))) = ddimF1 + ddimF2

− dim (WF1(x) ∩ WF2(x)) + dim (WF1(x) ∩ WF2(x)) = dimM, x ∈ M ′ ,

due to (4.17), (4.19) and (4.20).

Remark 4.2. Thus, a G-invariant Hamiltonian function on M , commuting
with the algebra F , corresponds to a Hamiltonian system, integrable in non-
commutative sense. The calculations above give dindF = dim (WF1 ∩ WF2),
x ∈ M ′ and a common level set of functions from F in general position is
dindF-dimensional submanifold.

4.2.4 Method of the Hamiltonian Reduction

The method of the Hamiltonian reduction reduces a G-invariant Hamiltonian
system on a symplectic manifold M with a Poisson G-action to a Hamiltonian
system on a manifold of a smaller dimension. Its application can be hampered
by some singularities. In the present section we shall describe the most regular
situation, considered firstly in full generality in [117].

Suppose that M and G satisfy Definition 4.5, µ is the corresponding mo-
mentum map and a level set Mc := µ−1(c) for some c ∈ g∗ is a smooth
submanifold. In particular the last assumption is valid when c is a regular
value of the momentum map µ, but in some interesting cases the momentum
map has no regular values at all. Note that due to (4.16) the map µ has no
regular values if stationary subalgebras gx are nontrivial for all x ∈ M .3

The group Gc acts on the manifold Mc. Suppose that this action is proper
(it means that preimages of all compact sets w.r.t. the map G × M →
M × M, (g, x) → (gx, x) are compact) and free.4 Then the orbit space
M̃c := Gc\Mc is endowed with a structure of a smooth manifold such that the
canonical projection π1 : Mc → M̃c is a smooth map [58]. This orbit space
is called the reduced space of the symplectic space M w.r.t. the given Poisson
G-action.

The space M̃c is endowed also with a symplectic structure in the following
way. Suppose that x̃ ∈ M̃c, x ∈ Mc, π1(x) = x̃ and ξ, ζ ∈ TxM, ξ̃ = dπ1(ξ), ζ̃ =
dπ1(ζ). Define 2-form ω̃ on M̃c by the formula:

ω̃(ξ̃, ζ̃) = ω(ξ, ζ) .

This form is well defined. Indeed, the space ker dxπ1 is tangent to the Gc-orbit
passing through the point x and coincides with the space g̃(x)∩ker dxµ, which
3 Informally speaking, the bigger is the symmetry group, the more singular is the

Hamiltonian reduction.
4 If the regularity assumptions of the last two paragraphs are not valid, then the

reduction procedure is called singular. The review of different approaches in the
singular situation can be found in [136]. Note that an action of a compact Lie
group is always proper.
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is skew-orthogonal to the space TxMc = ker dxµ = g̃(x)ω. Therefore, the value
ω̃(ξ̃, ζ̃) does not depend on the choice of ξ ∈ dπ−1

1 (ξ̃) and ζ ∈ dπ−1
1 (ζ̃). Since

Gc acts on Mc by symplectomorphisms, the form ω̃ also does not depend on
the choice of x ∈ π−1

1 (x̃).
The form ω̃ is nondegenerate. Indeed, if ω̃(ξ̃, ζ̃) = 0, ∀ζ̃ ∈ Tx̃M̃c, then the

space dπ−1
1 (ξ̃) is skew-orthogonal to TxMc = g̃(x)ω and therefore dπ−1

1 (ξ̃) ⊂
g̃(x) ∩ TxMc. This means that dπ−1

1 (ξ̃) is tangent to Gc-orbit and ξ̃ = 0.
The form ω̃ is closed due to 0 = (dω)|Mc

= d
(
ω|Mc

)
= d (dπ∗

1 ω̃) = dπ∗
1dω̃

and the surjectivity of dπ1. Thus, M̃c is a symplectic space.
Let h be a G-invariant Hamiltonian function on M . The vector field Xh

is tangent to Mc due to Proposition 4.4 and its restriction Xh|Mc
is invariant

w.r.t. Gc-action. Therefore, the projection X̃h of the field Xh onto M̃c is well
defined.

Let h̃ be the projection of h onto M̃c. The Hamiltonian system on M̃c with
the Hamiltonian function h̃ is called the reduced Hamiltonian system.

Proposition 4.7. The vector field X̃h is Hamiltonian w.r.t. the symplectic
form ω̃ with the Hamiltonian function h̃, in other words it holds X̃h = Xh̃.
The map

ηc : h → h̃ (4.22)

is an homomorphism of the Poisson algebra C∞(M)G of G-invariant func-
tions on M in the Poisson algebra C∞(M̃c).

Proof. The relation dh = ω(·,Xh) implies the relation dh̃ = ω̃(·, X̃h) due to
definitions of h̃, ω̃ and X̃h, that proves the first part of the proposition. Let
h1, h2 ∈ C∞(M)G, then

[h̃1, h̃2]P = −ω̃
(
X̃h1 , X̃h2

)
= −ω (Xh1 ,Xh2) = [h1, h2]P ,

i.e., the map (4.22) is a homomorphism of Poisson algebras. ��

4.3 Hamiltonian Systems on Cotangent Bundles

Here we shall specify the theory of two preceding sections for the special type
of symplectic manifolds, which are important for applications.

4.3.1 Canonical Symplectic Structure on Cotangent Bundles

Let N be a smooth manifold and M = T ∗N the corresponding cotangent
bundle. A general point x of M can be written in the form x = (q, p), q ∈
N, p ∈ T ∗

q N . Let π4 : T ∗N → N be the canonical projection. Define the
canonical 1-form α by the formula

α(ξ) = p(dπ4(ξ)), ξ ∈ Tx (T ∗N) .
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If q1, . . . , qm are local coordinates on N and p1, . . . , pm are corresponding
coordinates on the fiber T ∗

q N , then

α =
m∑

i=1

pidqi .

Obviously, the 2-form

ω := dα =
m∑

i=1

dpi ∧ dqi

on M is nondegenerate, closed and thus determines the canonical symplectic
structure on the cotangent bundle M . Coordinates pi, i = 1, . . . ,m on linear
fibers are called momenta, corresponding to coordinates qi, i = 1, . . . , m on
N . In these coordinates one has

Xh =
m∑

i=1

(
∂h

∂pi

∂

∂qi
− ∂h

∂qi

∂

∂pi

)
,

and the corresponding Poisson brackets are

[f, h]P =
m∑

i=1

(
∂f

∂qi

∂h

∂pi
− ∂f

∂pi

∂h

∂qi

)
, f, h ∈ C∞(M) . (4.23)

Further, let G be a Lie group with a left action on N by diffeomorphisms
q → ψg(q), g ∈ G, q ∈ N . This action induces the cotangent lifted G-action on
M = T ∗N by diffeomorphisms:

x = (q, p) → ψ̂g :=
(
ψg(q), dψ∗

g−1(p)
)

, (4.24)

where dψ∗
g−1 : T ∗

q N → T ∗
ψg(q)N is the codifferential of the map ψg−1 . Clearly,

this action conserves the form α. Therefore, due to (4.3), it holds

d
(
α(Ỹ )

)
+ (dα)(Ỹ , ·) = £Ỹ α = 0, Y ∈ g, (4.25)

where Ỹ is the same as in Definition 4.5 w.r.t. action (4.24). Particulary, action
(4.24) is symplectic, since £Ỹ ω = £Ỹ (dα) = d

(
£Ỹ α

)
= 0.

Proposition 4.8. The action (4.24) is Poisson. The corresponding momen-
tum map is defined as

µ(x)(Y ) = α(Ỹ )
∣
∣
∣
x

, x ∈ M,Y ∈ g .

Proof. For Y ∈ g define a function hY on M by the formula hY = α(Ỹ ).
Due to (4.25) one has dhY = ω(·, Ỹ ), that means that the vector field Ỹ is
Hamiltonian with the Hamiltonian function hY .

It remains to show that the correspondence Y → α(Ỹ ) is a homomorphism
of Lie algebras. Due to Proposition 4.1 the function



100 4 Hamiltonian Systems with Symmetry

[
α(Ỹ ), α(Z̃)

]

P
, Y, Z ∈ g

is a Hamiltonian one for the vector field

−
[
Ỹ , Z̃

]
= [̃Y,Z].

The sign here is due to (2.1). Since α
(
[̃Y,Z]

)
is also a Hamiltonian function

for the same vector field, the function
[
α(Ỹ ), α(Z̃)

]

P
− α

(
[̃Y,Z]

)
(4.26)

is a constant. Due to (4.23) expression (4.26) is a homogeneous polynomial in
momenta of the first degree. Thus, expression (4.26) vanishes, Q.E.D. ��

4.3.2 Invariant Functions on Cotangent Bundles

Denote by P(T ∗N) ⊂ C∞(M) the Poisson algebra, consisting of smooth real-
valued functions, polynomial on fibers of the cotangent bundle T ∗N .

Suppose now that N is homogeneous w.r.t. a left G-action and denote by
P(T ∗N)G ⊂ P(T ∗N) the subalgebra of G-invariants w.r.t. the action (4.24).
The theory of Sect. 2.1 for the algebra DiffG(N) is transformed mutatis mu-
tandis for the Poisson algebra P(T ∗N)G.

Firstly consider the case N = G. Since the group G freely acts by left
shifts on itself, the algebra P(T ∗G)G is naturally identified with the algebra
P(g∗) of polynomial functions on g∗, i.e., with the symmetric algebra S(g).
Also, the homomorphic extension ıc of the linear map

Y ∗ → Y # ∈ P(T ∗G)G, Y #(q, p) = −p(dπ4(Ỹ l)), q ∈ G, p ∈ T ∗
q G (4.27)

is the isomorphism of commutative algebras S(g) and P(T ∗G)G, where
Y ∗ ∈ S(g) is the element, corresponding to an element Y ∈ g, and Ỹ l is
the corresponding left invariant vector field on T ∗G. In other words, the vec-
tor field Ỹ l is generated by the element Y w.r.t. the cotangent lifted action of
the group G on itself from the right:

(q, p) → (qq1, dR∗
q−1
1

p), q, q1 ∈ G, p ∈ T ∗
q G. (4.28)

The isomorphism ıc is the composition of the automorphism of S(g), induced
by multiplication elements from S1(g) = g by −1, and the above identification
S(g) with P(T ∗G)G.

Proposition 4.9 (cf. Theorem 13.1.1 in [116]). The map ıc is an isomor-
phism of Poisson algebras P(T ∗G)G and Sp(g), where the Poisson structure
for the latter was defined at the beginning of Sect. 4.2.

Proof. Arguing as in the proof of Proposition 4.8 for the case of the G-action
on T ∗G from the right, one proves that the function −Y # is a Hamiltonian
one for a vector field Ỹ l. Due to Proposition 4.1 the function
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[Y #, Z#]P , Y, Z ∈ g

is a Hamiltonian one for the vector field

−[Ỹ l, Z̃l] = −[̃Y,Z]
l

.

Another Hamiltonian function for this vector field is [Y,Z]# and due to the
arguments in the proof of Proposition 4.8 it holds

[Y,Z]# = [Y #, Z#]P .

This means that ıc is the isomorphism of Poisson algebras Sp(g) and P(T ∗G)G.
��

Using Theorem 2.2 one gets the following isomorphism of Poisson algebras

P(T ∗G)G ∼= Sp(g) ∼= gr U(g) ∼= gr LDiff(G) . (4.29)

Let now N ∼= G/K be a reductive homogeneous space, where K is a
stationary subgroup for a point x0 ∈ M . As in Sect. 2.1.3 let p be a subspace
of g such that g = p ⊕ k, [p, k] ⊂ p and AdK p ⊂ p.

Evidently, due to the Leibniz rule the set S(g)K is a Poisson subalgebra
in Sp(g). Denote it by Sp(g)K .

Definition 4.6. Call a linear subspace A′ of a Poisson algebra A a Poisson
ideal of A iff it is an ideal w.r.t. (commutative) multiplication and [A′,A]P ⊂
A′.

Let S(g)k be an ideal in commutative algebra S(g), generated by elements
from k. Obviously, (cf. (2.9))

S(g) = S(g)k ⊕ S(p). (4.30)

Let (S(g)k)K be a subalgebra in S(g)k, consisting of AdK-invariant elements.
It is a Poisson ideal in the Poisson algebra Sp(g)K , since for f ∈ k and g ∈
Sp(g)K one has [f, g]P = 0 and thus

[
(Sp(g)k)K

, g
]

P
⊂ (Sp(g)k)K . Since both

direct summands in (4.30) are AdK-invariant, one has

S(g)K = (S(g)k)K ⊕ S(p)K . (4.31)

Therefore, the Poisson factor algebra Sp(g)K/ (Sp(g)k)K is well defined and it
is isomorphic as a commutative algebra to S(p)K , cf. Theorem 2.3.

The cotangent space T ∗
x0

N is naturally identified with ann k ⊂ g∗. Ele-
ments from ann k are in one-to-one correspondence with elements from p∗.
This correspondence is given by the restriction of an element φ ∈ ann k onto
p.

Due to the transitivity of G-action on N a function f ∈ P(T ∗N)G

is uniquely determined by its restriction onto T ∗
x0

N ∼= p∗, which is Ad∗
K-

invariant. On the other hand, if a polynomial φ on p∗ ∼= T ∗
x0

N is Ad∗
K-

invariant, then it is uniquely extended to some function from P(T ∗N)G.
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Thus, one established the isomorphism between elements from P(T ∗N)G

and invariants of the Ad∗
K-action on p∗. Clearly, latter invariants are in one-

to-one correspondence with element from the set S(p)K , consisting of AdK-
invariant elements from S(p).

Now we shall describe the Poisson algebra structure on P(T ∗N)G through
the Poisson structure on Sp(g). Consider the following left K-action on the
Lie group G:

g → χq(g) := gq−1, g ∈ G, q ∈ K (4.32)

and its cotangent lift onto T ∗G

x = (g, p) →
(
χq(g), dχ∗

q−1(p)
)

, g ∈ G, p ∈ T ∗
g G . (4.33)

Due to Proposition 4.8 this action is Poisson. The zero level set of the corre-
sponding momentum map is

(T ∗G)0 =
(
(g, p) ∈ T ∗G| g ∈ G, p ∈ ann kg ⊂ T ∗

g G
)
,

where kg is the image of the imbedding k into TgG by the differential of action
(4.32). Evidently, (T ∗G)0 is a smooth subbundle of the cotangent bundle
T ∗G. The stationary subgroup of the element 0 ∈ k∗ is the whole K and it
acts on (T ∗G)0 freely and properly. The reduced phase space is identified with
T ∗(G/K). It is easily seen that the reduced symplectic structure on T ∗(G/K)
coincides with the canonical symplectic structure of a cotangent bundle.

Let PK(T ∗G) be a subalgebra of the commutative algebra P(T ∗G), con-
sisting of K-invariants of action (4.33). Moreover, since action (4.33) conserves
the symplectic structure, PK(T ∗G) is a Poisson subalgebra of P(T ∗G). Propo-
sition 4.7 implies that the projection map

ηc : PK(T ∗G) → P (T ∗(G/K)) ,

constructed in Sect. 4.2.4, is a homomorphism of Poisson algebras. Consider-
ing the restriction of functions from PK(T ∗G)G onto T ∗

e G one obtains that
the restriction η̄c of the homomorphism ηc onto the Poisson subalgebra of
G-invariants is the epimorphism:

η̄c : PK(T ∗G)G → P(T ∗(G/K))G .

Here the superscript G denotes the corresponding subalgebras of G-invariants
w.r.t. left G-shifts on T ∗G and T ∗(G/K). Similarly, the restriction ı̄c of the
map ıc (see (4.27)) onto Sp(g)K is the isomorphism of Poisson algebras Sp(g)K

and PK(T ∗G)G.
Thus, one gets the sequence

Sp(g)K ı̄c−−−−→ PK(T ∗G)G η̄c−−−−→ P(T ∗(G/K))G

of homomorphisms of Poisson algebras.

Theorem 4.5 (cf. Theorem 2.3). The Poisson algebra P(T ∗(G/K))G is
isomorphic to the factor algebra Sp(g)K/ (Sp(g)k)K and also to the graded
algebra for the filtered algebra DiffG(G/K). The map
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� := η̄c ◦ ı̄c|S(p)K : S(p)K → P(T ∗(G/K))G

is an isomorphism of commutative algebras.

Proof. Since ı̄c is isomorphism and η̄c is epimorphism, one obtains that

P(T ∗(G/K))G ∼= Sp(g)K/ı̄−1
c (ker η̄c) .

Due to the definition of the map η̄c the set ker η̄c consists of functions vanishing
while being restricted onto ann ke = ann k. Therefore ı̄−1

c (ker η̄c) = (Sp(g)k)K

that proves the first claim.
Since the AdK-action conserves the filtration of U(g), the isomorphism

gr
(
DiffG(G/K) ∼= P(T ∗(G/K))G

)
(4.34)

follows from Theorems 2.1 and 2.3. The last claim of the proposition is the
direct consequence of the first one and expansion (4.31). ��

Remark 4.3. If generators and corresponding relations for the algebra
DiffG(G/K) were constructed from homogeneous generators and relations in
S(p̃)K as described in Sect. 2.1.4, then one can obtain generators and relations
for the Poisson algebra P(T ∗(G/K))G in the following way.

Replace generators Dk of the algebra DiffG(G/K) by generators pk of
P(T ∗(G/K))G and obtain the corresponding relations for pk simply by re-
jecting the lower terms in relations for Dk in DiffG(G/K). Namely, in a
commutator relation of the form [Di,Dj ] = P (Dk) one should reject on the
right hand side terms with degrees lower than deg Di + deg Dj − 1 and obtain
the corresponding relation in P(T ∗(G/K))G in the form [pi, pj ]P = P̃ (pk),
where P̃ (Dk) is the sum of monomials from P (Dk) with total degrees equal to
deg Di + deg Dj − 1.

The space G/K is called weakly commutative if the Poisson algebra
P(T ∗(G/K))G is commutative. From Theorem 4.5 we see that if G/K is com-
mutative, then it is weakly commutative. The inverse proposition was proved
in [150].

Remark 4.4. From remark 4.2 it follows that for a weakly commutative space
G/K any function from P(T ∗(G/K))G corresponds to a Hamiltonian system,
integrable in noncommutative sense modulo Assumption 4.1. It was shown
in [120] that if any function from P(T ∗(G/K))G corresponds to a Hamil-
tonian system on T ∗(G/K), integrable in commutative sense due to integrals
generated by the momentum map, then the homogeneous space G/K is weakly
commutative.

4.3.3 Natural Mechanical Systems and Dequantization

The transition from a commutative algebra of observables to a noncommu-
tative one is called quantization. Usually there is more or less arbitrariness
in this procedure. The geometric approach to quantization was described in
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[57, 180, 209]. In the situation under consideration the most natural quantum
analogue of the commutative algebra P(T ∗(G/K))G ∼= S(p)K is the algebra
DiffG(G/K). From the symmetry point of view, the inverse map to (2.6):
κ

−1 : S(p)K → DiffG(G/K) seems to be the most natural quantization map,
transforming Hamiltonian functions into quantum mechanical Hamiltonians.

However, this map is not satisfactory from the physical point of view, since
it can give Hamiltonians, which are not (even formally) self-adjoint and (or)
has an improper spectrum. In the following we will restrict ourselves with
so called natural mechanical systems on Riemannian spaces and describe for
them the procedure of dequantization, which will admit to derive the classical
mechanical expressions from quantum ones without tedious calculations.

Let N be a smooth manifold with local coordinates xi on a domain U ⊂ N
and pi be coordinates on fibers of T ∗U , corresponding to coordinates xi. Let
D be a differential operator on N . Define the function symbD ∈ P(T ∗U) as
the result of substituting pi instead of operators ∂/∂xi in a sum of leading
monomials from an expression of D through local coordinates. Due to the ten-
sor character of a coordinate change in leading terms of a differential operator
the function symbD does not depend on the choice of local coordinates and
thus is well defined on the whole space T ∗N . Call symb D the symbol of a
differential operator D. Obviously, symbD is a homogeneous polynomial on
each fiber of T ∗N , may be vanishing. If it is nontrivial on some fiber, then its
degree equals deg D.

Again, due to the tensor character of a coordinate change in leading terms
of a differential operator, one gets the same function symb D, operating in the
similar way with the expression of D through a moving frames.

Suppose now that the manifold N , not necessarily homogeneous, is en-
dowed with a Riemannian metric g, given in local coordinates by the ex-
pression gijdxidxj . The Laplace-Beltrami operator �g, corresponding to this
metric, is defined in (2.16). A natural one-particle quantum mechanical Hamil-
tonian is the operator

H = − 1
2m

�g +V , (4.35)

where a function V on the space N is a potential. The Hamiltonian for many
particle quantum mechanical system is the differential operator

H̃ = −1
2

∑

i

�i

mi
+ Ṽ , (4.36)

on the Riemannian space Ñ = N × . . .×N , where �i is the Laplace-Beltrami
operator on the ith factor of Ñ , mi is a mass of ith particle and a function Ṽ
is an interactive potential.

Remark 4.5. The operator (4.36) can be considered as the operator (4.35)
w.r.t. the metric

g̃ =
∏

i

migi

on Ñ , where gi is the metric on ith factor of Ñ and m = 1.
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The natural classical mechanical Hamiltonian function, corresponding to
(4.35), is the function

h =
1

2m

∑

i,j

gijpipj + V ◦ π4 , (4.37)

on T ∗N , where gijgjk = δi
k. Clearly, it holds

h =
1

2m
symb�g + V ◦ π4 . (4.38)

The transition from quantum mechanical many particle systems to classical
ones is similar due to remark 4.5.

Let G be a connected Lie group acting by isometries on N and O ⊂ N
be a G-orbit. Suppose that some neighborhood of O in N is isometric to a
direct product W × O for some submanifold W ⊂ N , transversal to O (see
Sect. 2.4), such that the G-action on N corresponds to its action only on the
second factor of this product. Then the operator �g|W×O can be expressed
in the form

�g|W×O =
∑

k

dk,0�k,2 +
∑

k

Dk,1�k,1 + D2 +
∑

k

d̃k�̃k .

Here dk,0, d̃k are smooth functions on W ; Dk,1 are differential operators of
the first order on W ; D2 is a differential operator of the second order on
W ; �k,1, �̃k are first order G-invariant differential operators on O; �k,2 are
second order G-invariant differential operators on O.

Let g = p⊕ k be the same expansion as in Sects. 2.1.3 and 4.3.2 w.r.t. the
homogeneous manifold O and the point x0 = W ∩O. Define the function from
P(T ∗(W ×O)) by the formula

s̃ymb�g =
∑

k

dk,0 · � ◦ κ2(�k,2) −
∑

k

symb(Dk,1) · � ◦ κ1(�k,1) + symb D2,

where the map � is defined in Theorem 4.5 and κk, k = 1, 2 is the composition
of the map κ (see (2.6)) with the projection of the algebra

S(p) =
∞⊕

k=1

Sk(p)

onto its direct summand Sk(p) consisting of homogeneous polynomials of k
order (see Sect. 2.1.2).

Proposition 4.10. It holds symb�g = s̃ymb�g on T ∗(W ×O).

Proof. Since symb (D1 ◦ D2) = symb D1 symb D2 for any differential opera-
tors D1 and D2, it is enough to prove that symb (�k,2) = � ◦ κ2 (�k,2) and
symb (�k,1) = −� ◦ κ1 (�k,1) on T ∗O.

Let ei be a base in p and ẽi be the corresponding vector fields on O,
forming a moving frame in some neighborhood U of the point x0 ∈ O. Let
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�k,2 =
∑

i,j

ĝij
k ẽi ◦ ẽj +

∑

i

g̃iẽi, �k,1 =
∑

i

ĝiẽi

be expressions for �k,2 and �k,1 in U . Then by definition of κ one has

κ2(�k,2) =
∑

i,j

ĝij
k

∣
∣
∣
x0

e∗i e
∗
j , κ1(�k,1) =

∑

i

ĝi
∣
∣
x0

ẽ∗i .

By definition of the map � in Theorem 4.5 one gets

� ◦ κ2(�k,2)|x0
=
∑

i,j

ĝij p̃ip̃j

∣
∣
x0

, � ◦ κ1(�k,1)|x0
= −

∑

i

ĝip̃i

∣
∣
x0

,

where p̃i are coordinates w.r.t. the base ẽi, dual to ẽi. Due to the definition
of the symbol map this completes the proof. ��

4.3.4 Reduction of Cotangent Bundles of Homogeneous Manifolds

Suppose as before that N = G/K is a G-homogeneous space with the reduc-
tive expansion g = p⊕k, π1 : G → N is the canonical projection and M = T ∗N
is the cotangent bundle for N . The space M is endowed with the Poisson G-
action ψ̂G (see (4.24)) and the momentum map µ : M → g∗, defined in
Proposition 4.8. Let π4 : T ∗N → N be another canonical projection. Identify
the tangent space Tx0N with p and the space T ∗

x0
N with p∗ ∼= ann k ⊂ g∗.

Under such identification the differential of left K-shifts on Tx0N becomes the
AdK-action on p and the differential dψ̂K on T ∗

x0
N becomes the Ad∗

K-action
on p∗. The reduced phase space for T ∗N under some regularity assumption
admits the description in terms of coadjoint orbits of the symmetry group G
[163, 165].

Consider a level set Mβ := µ−1(β) ⊂ M for β ∈ im µ. Without loss of
generality one can suppose that T ∗

x0
N ∩Mβ 
= ∅, since N is G-homogeneous.

This means that T ∗
x0

N ∩ Mβ = (x0, β), β ∈ ann k ∼= p∗. The stationary sub-
group of the group G, corresponding to the point (x0, β), is the stationary
subgroup K0 ⊂ K of the element β ∈ p∗ ∼= ann k w.r.t. the Ad∗

K |
p∗ -action.

Evidently, elements y ∈ Mβ are in one-to-one correspondence with elements
of the form π4(y). Denote M ′

β = π4(Mβ).
Identify the algebra g with the tangent space TeG and the space g∗ with

the space T ∗
e G. As above, denote by Xr the right invariant vector field on

G, corresponding to an element X ∈ g. Consider a general point of Mβ in
the form x = (π1g, p′) ∈ Mβ , g ∈ G, p′ ∈ T ∗

π1gN and the corresponding
point (g, p) ∈ T ∗G, where p = dπ∗

1(p′). According to the definition of the
momentum map it holds p(Xr|g) = β(X), i.e., p = dR∗

g−1β. Also, Xr|g ∈
N := ker dπ1|TgG iff X ∈ Adg k. Since p|N = 0, one has β ∈ ann Adg k or
equivalently Ad∗

g−1 β ∈ ann k.

Conversely, if Ad∗
g−1 β ∈ ann k, then dR∗

g−1β
∣
∣
∣
N

= 0 and there exists a

unique element p′ ∈ T ∗
π1gN such that p := dπ∗

1(p′) = dR∗
g−1β and (π1g, p′) ∈

Mβ . Denote
Gβ =

(
g ∈ G | Ad∗

g−1 β ∈ ann k
)

.
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Assumption 4.2. Suppose that Gβ is a nonempty smooth submanifold of G.

Obviously, this assumption is the corollary of

Assumption 4.3. The orbit Oβ of the coadjoint action Ad∗
G of the group G

in g∗, containing a point β ∈ ann k, is transversal to the subspace ann k ⊂ g∗.

Clearly, the group K acts on Gβ by right shifts freely and properly. Orbits
of this action are identified with elements of M ′

β . Therefore, under assump-
tion 4.2, the set M ′

β is a smooth manifold, diffeomorphic to Mβ . Denote by

� : Gβ → M ′
β
∼= Gβ/RK

the corresponding right principle bundle. In fact � = π1|Gβ
.

Let Gβ be the stationary subgroup of the group G w.r.t. the Ad∗
G-action

and the point β ∈ g∗. It acts on Gβ by left shifts freely and properly. Orbits
of this action are in one to one correspondence with level sets of the map

τ : Gβ → ann k, τ(g) = Ad∗
g−1 β . (4.39)

Let
O′

β := Oβ ∩ ann k .

Thus, one gets the left principle bundle

τ : Gβ → O′
β
∼= Gβ/LGβ

,

where the set O′
β is a smooth manifold under Assumption 4.2.

The right K-shifts on Gβ and the left Gβ-shifts on Gβ commute and it
holds

τ(gq) = Ad∗
q−1 ◦τ(g), g ∈ Gβ , q ∈ K . (4.40)

Thus, the group K acts on O′
β by the map Ad∗

q−1 , q ∈ K.
Similarly, the group Gβ acts on M ′

β by the map

�(g) → q�(g) = �(qg), g ∈ Gβ , q ∈ Gβ .

Denote by Õβ := O′
β/Ad∗

K = M ′
β/Gβ the corresponding factor space and

by
τ ′ : M ′

β → Õβ , �′ : O′
β → Õβ

the corresponding canonical projections. Thus, one obtains the commutative
diagram:

Gβ
τ−−−−→ O′

β

�



,



,�′

M ′
β

τ ′
−−−−→ Õβ

(4.41)

Assumption 4.4. Suppose that Ad∗
K-action on O′

β is free and proper. Due
to (4.40) the first condition is equivalent to the condition that an intersection
of any RK-orbit on Gβ and any LGβ

-orbit on Gβ consists of no more than one
point. It is also equivalent to the condition that LGβ

-action on M ′
β is free.
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Under assumptions 4.2 and 4.4 the factor space Õβ = O′
β/Ad∗

K is a smooth
manifold and it is diffeomorphic to the reduced space M̃β = M ′

β/Gβ from Sect.
4.2.4, endowed with the symplectic structure ω̃. Also, this symplectic structure
can be obtained from the canonical symplectic structure on Ad∗

G-orbits.
Indeed, let ω∗ be the restriction of the Kirillov form onto O′

β and β′ be an
arbitrary point of O′

β . Let X∗ and Y ∗ be vector fields on Oβ , corresponding
to elements X,Y ∈ g as in (4.10), such that X∗|β′ , Y ∗|β′ ∈ Tβ′O′

β . Due to
the definition of the Kirillov form in (4.11) it means that ω∗(X∗, Y ∗)|β′ =
−β′ ([X,Y ]). Since the vector X∗|β′ is tangent to O′

β , it holds

d

dt

∣
∣
∣
∣
t=0

(
Ad∗

exp(tX) β′
)
∈ ann k,

and thus

β′ ([X,Y0]) = − d

dt

∣
∣
∣
∣
t=0

(
Ad∗

exp(tX) β′
)

(Y0) = 0

for any Y0 ∈ k. This means that the following 2-form ω̂ is well-defined on Õβ

by the formula:
ω̂(X̃, Ỹ ) = ω∗(d�′−1

X̃, d�′−1
Ỹ )

for X̃, Ỹ ∈ T�′β′Õβ .

Theorem 4.6. Under assumptions 4.2 and 4.4 the reduced space M̃β, corre-
sponding to a value β of the momentum map, is diffeomorphic to the space
Õβ. Moreover, the identification of M̃β and Õβ by the map τ ′ gives ω̂ = −ω̃.

Proof. The first claim is already proved. Let G′
β be the image of the inclusion

of Gβ into T ∗G through the map

 : g →
(
g, dR∗

g−1β
)

.

Let ω′ = d∗(ω|G′
β
) be the 2-form on Gβ , where ω = dα for the canonical 1-form

α on T ∗G. Also, let αN be the canonical 1-form on T ∗N , the 2-form ωN = dαN

be the canonical symplectic structure on T ∗N and ω′
N be the 2-form on M ′

β ,
induced by ωN through the isomorphism κ := π4|Mβ

: Mβ → M ′
β .

Due to the construction of the 2-form ω̃ in Sect. 4.2.4 for the proof of the
second claim it is enough to show that

dτ∗ (ω∗) = −ω′, d�∗ (ω′
N ) = ω′ .

Let g be an arbitrary fixed point of Gβ . An arbitrary vector from TgGβ

can be represented in the form X l
∣
∣
g

for some X ∈ g, where X l is the left
invariant vector field on G. The map dτ transforms the vector field X l

∣
∣
Gβ

into the vector field −Xc on O′
β , see (4.10). Let Y l

∣
∣
g

be another vector from

TgGβ for some Y ∈ g. Let X̃ l and Ỹ l be vector fields on T ∗G, induced by
elements X and Y w.r.t the right G-action (4.28) on T ∗G.



4.3 Hamiltonian Systems on Cotangent Bundles 109

Clearly, X̃ l
∣
∣
∣
(g)

= d(X l
∣
∣
g
) ∈ T(g)G′

β , Ỹ l
∣
∣
∣
(g)

= d(Y l
∣
∣
g
) ∈ T(g)G′

β and

also due to (4.11) and (4.39) one gets

ω∗
(
dτ(X l

∣
∣
g
), dτ(Y l

∣
∣
g
)
)

= ω∗ (Xc, Yc)|τ(g) = −
(
Ad∗

g−1 β
)
([X,Y ]) . (4.42)

On the other hand, by definition of the 2-form ω it holds

ω
(
X̃ l, Ỹ l

)
= dα

(
X̃ l, Ỹ l

)
= X̃ l

(
α
(
Ỹ l
))

− Ỹ l
(
α
(
X̃ l
))

− α
([

X̃ l, Ỹ l
])

.

Since vector fields X̃ l and Ỹ l generate flows conserving the form α, one has

X̃ l
(
α
(
Ỹ l
))

= α
(
£X̃l Ỹ

l
)

= α
([

X̃ l, Ỹ l
])

= α

(
[̃X,Y ]

l
)

due to (2.3) and similarly

Ỹ l
(
α
(
X̃ l
))

= α

(
[̃Y,X]

l
)

.

Thus, due to definitions of ω′ and α, it holds

ω′
(

X l
∣
∣
g
, Y l

∣
∣
g

)
= ω

(
X̃ l, Ỹ l

)∣∣
∣
(g,dR∗

g−1β)
= α

(
[̃X,Y ]

l
)∣∣
∣
∣
(g,dR∗

g−1β)

=
(
dR∗

g−1β
)

(dLg ([X,Y ]))=
(
dL∗

g ◦ dR∗
g−1β

)
([X,Y ])=

(
Ad∗

g−1 β
)
([X,Y ]) .

(4.43)

Therefore, from (4.42) one gets

ω′
(

X l
∣
∣
g
, Y l

∣
∣
g

)
= −ω∗

(
dτ(X l

∣
∣
g
), dτ(Y l

∣
∣
g
)
)

or equivalently dτ∗ (ω∗) = −ω′.
At the same time any vector from TgGβ has the form Xr|g for some X ∈ g,

where Xr is the right invariant vector field on G. Let Y r|g be another such

vector. Evidently, Xr|g =
(
Adg−1 X

)l∣∣
∣
g
, Y r|g =

(
Adg−1 Y

)l∣∣
∣
g

and (4.43)

implies

ω′
(

Xr|g , Y r|g
)

=
(
Ad∗

g−1 β
) ([

Adg−1 X,Adg−1 Y
])

= β
(
Adg ◦Adg−1 [X,Y ]

)
= β ([X,Y ]) .

(4.44)

Let XN = dπ1(Xr), YN = dπ1(Y r) ∈ X (N) and

X̃N = (dκ)−1
(

XN |M ′
β

)
∈ X (M)|Mβ

, ỸN = (dκ)−1
(

YN |M ′
β

)
∈ X (M)|Mβ

,

where X (M)|Mβ
denotes the restriction of the module X (M) onto Mβ ⊂ M .

Note that vector fields XN , YN correspond to left G-shifts on N (cf. Sect. 2.1.1)
and one can define a vector field ZN for an arbitrary Z ∈ g. Likewise (2.2), it
holds
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[XN , YN ] = −[X,Y ]N . (4.45)

Let x := (�(g), p′) := κ−1 ◦ �(g), p′ ∈ T ∗
�(g)N . From Xr|g , Y r|g ∈ TgGβ

one gets XN |g , YN |g ∈ T�(g)M
′
β and therefore

X̃N

∣
∣
∣
x
∈ Tx (Mβ) , ỸN

∣
∣
∣
x
∈ Tx (Mβ) . (4.46)

At other points y 
= x of Mβ it is possible that X̃N

∣
∣
∣
y
, ỸN

∣
∣
∣
y

∈ Ty (Mβ). In

any case due to the definition of ω′
N

ω′
N (XN , YN )|�(g) = ωN

(
X̃N , ỸN

)∣∣
∣
x

= X̃N

(
αN

(
ỸN

))∣∣
∣
x

− ỸN

(
αN

(
X̃N

))∣∣
∣
x
− αN

([
X̃N , ỸN

])∣∣
∣
x

.

Since functions

αN

(
ỸN

)∣∣
∣
Mβ

= p′(YN )|M ′
β

= β(Y ), αN

(
X̃N

)∣∣
∣
Mβ

= β(X)

are constant on Mβ , taking into account (4.46), one gets

X̃N

(
αN

(
ỸN

))∣∣
∣
x

= ỸN

(
αN

(
X̃N

))∣∣
∣
x

= 0 .

Therefore, it holds

ω′
N (XN , YN )|�(g) = −p′

(
dκ
([

X̃N , ỸN

]))∣∣
∣
�(g)

= −p′
([

dκ
(
X̃N

)
, dκ

(
ỸN

)]∣∣
∣
�(g)

)

= −p′
(

[XN , YN ]|�(g)

)
= p′

(
[X,Y ]N |�(g)

)
= β([X,Y ])

due to (4.45).
Thus, comparing the last formula with (4.44), one concludes that ω′ =

d�∗(ω′
N ). This completes the proof. ��

The form ω̃ is symplectic, so we get:

Corollary 4.1. The form ω̂ is symplectic on Õβ, i.e., it is nondegenerate and
closed.

Remark 4.6. This theorem generalizes the well-known fact that the reduced
space for the symplectic space T ∗G is symplectomorphic to an orbit of Ad∗

G-
action [8, 117]. In this case K = {e}, Gβ = G ∼= M ′

β , Õβ = O′
β = Oβ and

assumptions 4.2, 4.4 are trivially fulfilled.

In Sect. 7.5 we shall use the symplectomorphism from Theorem 4.6 for the
reduction of the space T ∗N , where N is a smooth manifold with a Lie group
G acting on it, but not in a transitive way. Below there are some historical
comments.
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The Hamiltonian reduction of cotangent bundle T ∗N , under assumption
that G acts freely on N , was studied in [97, 114, 115] (see also references
therein). The latter assumption is too restrictive at least for the two-body
problem on a two-point homogeneous space Q with dimR Q � 3. The ap-
proach of [97] to the cotangent reduction was generalized for a non-free G-
action in preprint [126]. This paper gives the description of the reduced space,
corresponding to β ∈ Im µ ⊂ g∗ as a subbundle Pβ of the cotangent bundle
T ∗(Nβ/Gβ), where Nβ is the image of the canonical projection

T ∗N ⊃ µ−1(β) → N,

and Gβ , as above, is the stationary subgroup of the group G, w.r.t. Ad∗
G-

action. The symplectic structure on Pβ is induced by a two-form on T ∗(Nβ/Gβ)
that differs from the canonical symplectic structure on T ∗(Nβ/Gβ) by the ad-
ditional “magnetic” term.

Our approach in Theorem 4.6 and its generalization for the non transitive
G-action on N seem to be more straightforward, since they give the description
of the reduced phase space only in terms of coadjoint orbits, the canonical
symplectic structure on them and the factor space N/G.



5

Two-Body Hamiltonian on Two-Point
Homogeneous Spaces

The main characteristic for the system of two classical particles on a Rie-
mannian space M is the distance between them. If the space M is homoge-
neous and isotropic, this distance is the only geometric invariant for a position
of particles in M . This motivates the separation of degrees of freedom into
two types. The first type contains only one radial degree of freedom. The sec-
ond one contains other degrees of freedom, which correspond to the isometry
group. Such separation should appear itself also in studying the two-body
quantum Hamiltonian (or the classical Hamiltonian function) and in an ex-
pansion of the corresponding Hilbert space.

In this chapter we derive a rigorous base for these separation in quantum
case. Namely we find an expression of the two-body Hamiltonian through
a radial differential operator and generators of the algebra DiffI(QS) from
Chap. 3.

The corresponding expression for the two-body classical Hamiltonian func-
tion can be derived in a similar way. But it is simpler to get such expression
from its quantum analogue (provided it is already calculated), using Proposi-
tion 4.10 that will be done in Chap. 7.

Sections 5.1–5.3 follow the consideration in [169] with correction of some
misprints.

5.1 Homogeneous Submanifolds in the Configuration
Space of the Two-Body Problem

Let M̃ = Q be an arbitrary two-point homogeneous Riemannian space with
dimR Q = n and a space M be the direct product Q×Q. Denote also by π̃i, i =
1, 2 the projection onto the ith factor of the product M = Q × Q, by G the
identity component of the isometry group for Q and by ρ(x1, x2) the distance
between points x1, x2 ∈ Q. The function ρ2(x) := ρ(π̃1(x)), π̃2(x)), x ∈ M
determines the distance between particles.

At last let H = H0 + V be the two-body Hamiltonian (2.40). The free
Hamiltonian H0 on the space M is the Laplace-Beltrami operator for the
metric

A.V. Shchepetilov: Calculus and Mechanics on Two-Point Homogeneous Riemannian Spaces,
Lect. Notes Phys. 707, 113–126 (2006)
DOI 10.1007/3-540-35386-0 5 c© Springer-Verlag Berlin Heidelberg 2006
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g2 := m1π̃
∗
1g + m2π̃

∗
2g (5.1)

on this space, multiplied by −1/2, where π̃∗
i g is the pullback of the metric g

with respect to the projection on the ith factor. In order to find an explicitly
invariant expression for the operator H0, consider the foliation of the space M
by submanifolds Fp that are level sets of the function ρ2. A fiber Fp ⊂ M is
G-homogeneous Riemannian manifolds with respect to the restriction of the
metric g2 on it; therefore, one can use the construction from Sect. 2.1 for the
description of differential operators on this fiber. “To glue” these constructions
for different p we shall proceeds as follows.

Suppose that Q is a compact two-point homogeneous Riemannian spaces.
Let γ̃(s) : S1 ≡ R mod (2 diam Q) → Q be some (evidently closed) geo-
desic on the space Q, where s is a natural parameter. Let also s1, s2 :
[0,diam Q) → S1 ≡ R mod (2 diam Q) be smooth functions such that s1 is de-
creasing, s2 is increasing, s1(0) = s2(0) = 0 and ρ(γ̃(s1(p)), γ̃(s2(p))) ≡ p, p ∈
[0,diam Q), s′1(p)2 + s′2(p)2 
= 0. Define a curve γ : I := (0,diam Q) → M by
the formula γ(p) = (γ̃(s1(p)), γ̃(s2(p))) ∈ M . A stationary subgroup of the
group G, corresponding to any point γ(p), 0 < p < diam Q, is the stationary
subgroup K0 ⊂ G, corresponding to the pair γ̃(s1(p)), γ̃(s2(p)) of points on
the geodesic γ̃. Due to Proposition 1.1 the group K0 does not depend on the
choice of p if 0 < p < diam Q and the factor space G/K0 is isomorphic to
the unit sphere bundle over Q as a G-homogeneous space. This construction
is valid also for a noncompact two-point homogeneous Riemannian spaces if
one assumes diam Q = ∞.

This consideration can be summarized in the following lemma.

Lemma 5.1. The map p → γ(p) from I to M is a regular curve γ in M , i.e.,
|γ′(p)| 
= 0 for all p ∈ I. This curve intersects each fiber Fp, p > 0 exactly
at one point and the set M ′ :=

⋃

p∈I

Fp is a connected dense open submanifold

in M . Stationary subgroups of the group G for the points γ(p) coincide with
each other for all p ∈ I.

Thus, one can identify the manifold M ′ with the space I × (G/K0) by the
following formula:

I × (G/K0) � (p, bK0) ←→ bγ(p) ∈ M ′, b ∈ G .

Evidently, the complementary set M\M ′ for a compact Q is the disjoint
union of the diagonal diag (Q × Q) and the set Qop := Fdiam Q. The latter
set is the fiber bundle with the base Q and fibers equal to antipodal man-
ifolds Ax, x ∈ Q. For a noncompact space Q the set M\M ′ coincides with
diag (Q × Q).

Let µ2 be a measure on M , generated by the metric g2. Using the identifi-
cation above one can consider µ2 also as a measure on the space I × (G/K0).
Since the set M\M ′ has a zero measure, we get the following isomorphism
between spaces of measurable square integrable functions:

L2 (M,µ2) ∼= L2 (I × (G/K0) , µ2) . (5.2)
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In the following for simplicity it will be convenient to change the parametriza-
tion of the interval I using some function p(r), p′(r) 
= 0, r ∈ I ′ ⊂ R+. In
this case we will write Fr := Fp(r). Since the group G acts only on the second
factor of the expansion M ′ = I × (G/K0), one can generalize the construction
for the lift of differential operators from Sect. 2.1 and find for a G-invariant
differential operator on the space I × (G/K0) its lift onto the space I × G.

Let p be a subspace in g, complimentary to the subalgebra k0 such that
[p, k0] ⊂ p. Let e1, . . . e2n−1 be a basis in p; X1, . . . , X2n−1 be the corresponding
Killing vector fields on the space M ′ and X l

i ,X
r
i be the corresponding left-

and right-invariant vector fields on the group G. Define a vector field tangent
to the curve γ by the formula X0 = d

drγ(p(r)). Since

dLqX0 =
d

dr
Lqγ(p(r)) =

d

dr
γ(p(r)) = X0, ∀q ∈ K0 ,

it is possible to spread the vector X0 by left shifts to the whole space M ′ and
obtain the smooth vector field on M ′ with the same notation X0. The fields
Xi, i = 0, . . . , 2n − 1 form the moving frame in some neighborhood of the
curve γ(p), p ∈ (0,diam Q), if the matrix B, consisting of the pairwise scalar
products of the fields Xi, is nondegenerate on γ(p), p ∈ (0,diam Q). The next
condition will be verified later in Sect. 5.2.

Condition 5.1. ThematrixB is nonsingular on the curveγ(p), p ∈(0,diam Q).

Express the operator �g2 via the moving frame Xi, i = 0, . . . , 2n − 1 by
the formula (2.18), assuming ξi = Xi, i = 0, . . . , 2n − 1, and transform the
result to the form aijXi ◦ Xj + biXi. Since the field X0, in contrast to other
fields Xi, is not a Killing one, after calculations similar to (2.20), we obtain
the following additional terms:

− (£X0g2) (Xi,Xj)ĝ0i
2 +

1
2
ĝki
2 (£X0g2) (Xk,Xi)δ0

j ,

where ĝ2,ij := g2(Xi,Xj), 0 � i, j � 2n − 1 are components of the metric g2

with respect to the moving frame Xi. Taking into account equations [X0,Xi] =
0, ∀i = 0, . . . , 2n − 1, one gets:

(£X0g2) (Xi,Xj) = X0g2(Xi,Xj) = X0 (ĝ2,ij) .

Thus, using formula (2.17), we get the following additional term in the formula
for the Laplace-Beltrami operator:

1
2
X0 (ĝ2,kj) ĝkj

2 ĝ0i
2 Xi − X0 (ĝ2,kj) ĝ0k

2 ĝji
2 Xi =

1
2γ̂

X0(γ̂)ĝ0i
2 Xi + X0(ĝ0i)Xi

=
1√
γ̂

X0

(√
γ̂ĝ0i

2

)
Xi,

where γ̂ = det ĝ2,ij . Finally, one has:

�g2 = ĝijXi ◦ Xj + cq
jq ĝ

jiXi +
1√
γ̂

X0

(√
γ̂ĝ0i

2

)
Xi .
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The vector field X0 on the space I ′ × (G/K0) has the form ∂/∂r and its
lift onto the space I ′ × G is again ∂/∂r. According to the Remark 2.4 and
Lemma 2.5 one gets the following expression for the lift of the operator �g2 :

�̃g2
= ĝij

∣
∣
x0

X l
i ◦ X l

j +
(
cq
jq ĝ

ji
)∣∣

x0
X l

i +
[

1√
γ̂

X l
0

(√
γ̂ĝ0i

2

)]∣∣
∣
∣
x0

X l
i , (5.3)

where X l
0 := ∂/∂r.

The G-invariant measure µ2 on the space I ′× (G/K0) has the form ν ⊗µ,
where ν = φ(r)dr is the measure on the interval I ′, and µ is a G-invariant
measure on the space G/K0. The measure on the space I ′×G, corresponding
to µ2, has the form µ̃2 = ν ⊗ µG, where µG is the left-invariant measure on
the group G, appropriately normalized.

Similarly to Sect. 2.1, one can define the bijection ζ between the set of func-
tions on the space I ′×(G/K0) and the set of functions on the space I ′×G that
are invariant with respect to the right K0-shifts. Denote by L2 (I ′ × G,K0, µ̃2)
the Hilbert space of square integrable K0-invariant functions on I ′ × G with
respect to the measure µ̃2 and the right K0-shifts. Thus, one gets the following
isometry of Hilbert spaces:

ζ : L2 (M,µ2) → L2 (I ′ × G,K0, µ̃2) ,

and also �̃g2
◦ ζ = ζ ◦ �g2 .

5.2 Two-Body Hamiltonian on a Compact Two-Point
Homogeneous Space

In this section we shall find the concrete expression for the two-point Hamil-
tonian of the form (5.3) on an arbitrary compact two-point homogeneous space
Q. Let

L,Xλ,i, Yλ,i,X2λ,j , Y2λ,j , i = 1, . . . , q1, j = 1, . . . , q2 (5.4)

be the Killing vector fields on the space Q, corresponding to the elements of
the algebra g from the Proposition 1.4

Λ, eλ,i, fλ,i, e2λ,j , f2λ,j , i = 1, . . . , q1, j = 1, . . . , q2 (5.5)

with respect to the left action of the group G on the space Q. Due to (2.1) this
correspondence changes signs of commutators. For example it holds [L,Xλ,i] =
1
2Yλ,i, [L, Yλ,i] = − 1

2Xλ,i and so on. Define the curve γ̂ on the space Q by the

formula γ̂(s) = exp
( s

R
Λ
)

x0. This curve coincides with the geodesic γ̃ from
the previous section according to the second claim of the following proposition.

Proposition 5.1. 1. Among all possible pairwise scalar products of fields
(5.4) on the curve γ̂ only products from the followings list are nonzero:

g(L,L)|γ̂ = R2 , (5.6)
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g(Xλ,i,Xλ,i)|γ̂ =
R2

2

(
1 + cos

s

R

)
, i = 1, . . . , q1 , (5.7)

g(Xλ,i, Yλ,i)|γ̂ = −R2

2
sin

s

R
, i = 1, . . . , q1 , (5.8)

g(Yλ,i, Yλ,i)|γ̂ =
R2

2

(
1 − cos

s

R

)
, i = 1, . . . , q1 , (5.9)

g(X2λ,i,X2λ,i)|γ̂ =
R2

2

(
1 + cos

2s

R

)
, i = 1, . . . , q2 , (5.10)

g(X2λ,i, Y2λ,i)|γ̂ = −R2

2
sin

2s

R
, i = 1, . . . , q2 , (5.11)

g(Y2λ,i, Y2λ,i)|γ̂ =
R2

2

(
1 − cos

2s

R

)
, i = 1, . . . , q2 ; (5.12)

2. γ̂(s) = γ̃(s), s ∈ [0,diam Q).

Proof. By construction, the vector field L/R is tangent to the curve γ̂(s).
Since

d

ds
g(L,L)

∣
∣
∣
∣
γ̂(s)

=
2
R

g([L,L], L) = 0 ,

one has

g

(
1
R

L,
1
R

L

)∣∣
∣
∣
γ̂(s)

≡ g

(
1
R

L,
1
R

L

)∣∣
∣
∣
γ̂(0)

=
〈

1
R

Λ,
1
R

Λ
〉

= 1 ,

which is equivalent to (5.6). Therefore, the parameter s is the natural para-
meter on the curve γ̂. Using the equality

d

ds
g(X,Y )

∣
∣
∣
∣
γ̂(s)

=
L

R
(g(X,Y ))

∣
∣
∣
∣
γ̂(s)

=
1
R

(g([L,X], Y )
∣
∣
∣
∣
γ̂(s)

+
1
R

(g(X, [L, Y ])
∣
∣
∣
∣
γ̂(s)

for smooth vector fields X,Y on the curve γ̂, the relations (1.6) and the con-
nection of the metric g(·, ·)|Tx0Q with the scalar product 〈·, ·〉 on the algebra
g, one gets the system of linear differential equations and initial conditions for
all possible pairwise scalar products of the fields (5.4) on the curve γ̂. This
system decomposes into a set of easily solvable subsystems. For example, one
has

d

ds
g(Xλ,i,Xλ,i)

∣
∣
∣
∣
γ̂(s)

=
2
R

g ([L,Xλ,i],Xλ,i)|γ̂(s) =
1
R

g(Yλ,i,Xλ,i)|γ̂(s) ,

d

ds
g(Yλ,i,Xλ,i)

∣
∣
∣
∣
γ̂(s)

=
1
R

g ([L, Yλ,i],Xλ,i)|γ̂(s) +
1
R

g (Yλ,i, [L,Xλ,i])|γ̂(s)

= − 1
2R

g(Xλ,i,Xλ,i)|γ̂(s) +
1

2R
g(Yλ,i, Yλ,i)|γ̂(s) ,
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d

ds
g(Yλ,i, Yλ,i)

∣
∣
∣
∣
γ̂(s)

=
2
R

g ([L, Yλ,i], Yλ,i)|γ̂(s) = − 1
R

g(Xλ,i, Yλ,i)|γ̂(s) .

Taking into account the initial conditions given by

g(Xλ,i,Xλ,i)|γ̂(0) = 〈eλ,i, eλ,i〉 = R2,

g(Xλ,i, Yλ,i)|γ̂(0) = g(Yλ,i, Yλ,i)|γ̂(0) = 0, i = 1, . . . , q1 ,

(valid due to the formula Yλ,i|γ̂(0) = 0), one gets (5.7)–(5.9). Other formulae
of the first statement can be derived in a similar way.

Let us prove the equality γ̂(s) = γ̃(s). It is sufficient to show that
∇LL|γ̂(s) = 0, since the parameters of the curves γ̂(s), γ̃(s) are natural. For-
mulae (2.21), (1.6) and the first statement of the Proposition 5.1 imply

g(∇LL,Xλ,i)|γ̂(s) = g(L, [L,Xλ,i])|γ̂(s) =
1
2

g(L, Yλ,i)|γ̂(s) = 0, i = 1, . . . , q1,

g(∇LL,X2λ,j)|γ̂(s) = g(L, [L,X2λ,j ])|γ̂(s) = g(L, Y2λ,j)|γ̂(s) = 0, j =1, . . . , q2,

g(∇LL,L)|γ̂(s) = g(L, [L,L])|γ̂(s) = 0 . (5.13)

Due to the first statement of this proposition the vector fields

L,Xλ,i,X2λ,j , i = 1, . . . , q1, j = 1, . . . , q2

form a moving frame in the tangent spaces Tγ̂(s)Q as s ∈ [0,diam Q), since
the matrix of their pairwise scalar products in these spaces is nonsingular.
Thus, due to (5.13), one has ∇LL|γ̂(s) ≡ 0, s ∈ [0,diam Q]. ��

Let K ⊃ K0 be a subgroup of the group G, conserving the point x0 = γ̃(0),
and k be its Lie algebra. The two-point homogeneity of the space Q implies
that K acts transitively on a subset

Qp := (x ∈ Q| ρ(x,x0) = p = const), 0 � p � diam Q

of Q. Due to Proposition 1.1 the stationary subgroup of this action, corre-
sponding to the point γ̃ ∩ Qp for 0 < p < diam Q, is the group K0. This
consideration leads to the following lemma, which will be used later.

Lemma 5.2. The subspace

Q′ := (x ∈ Q| 0 < ρ(x,x0) < diam Q)

is the following direct product

Q′ =
⋃

s∈(0,diam Q)

Kγ̃(s) = I × (K/K0),

where I = (0,diam Q).
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Remark 5.1. It was mentioned above in Sect. 1.2 that the decomposition
g = p ⊕ k is uniquely determined by the point x0. Therefore, due to propo-
sition 5.1 and the isotropy of the space Q all nonzero elements of the space
p have the following property: the trajectories of all one-parameter subgroups
corresponding to these elements and passing through the point x0 are geodesics.
In particular it holds for the elements eλ,i, e2λ,j , i = 1, . . . , q1, j = 1, . . . , q2.

Let us rename some notations to simplify the consideration of the space
M = Q × Q. Now, let

L = L(1) + L(2), Xλ,i = X
(1)
λ,i + X

(2)
λ,i , Yλ,i = Y

(1)
λ,i + Y

(2)
λ,i , i = 1, . . . , q1,

X2λ,j = X
(1)
2λ,j + X

(2)
2λ,j , Y2λ,j = Y

(1)
2λ,j + Y

(2)
2λ,j , j = 1, . . . , q2

be the decomposition of Killing vector fields on the space M which correspond
to the elements Λ, eλ,i, fλ,i, e2λ,j , f2λ,j and the decomposition T(x1,x2)M =
Tx1Q ⊕ Tx2Q. Let γ(p) be a curve on the space M , constructed according to
Sect. 5.1 with respect to the geodesic γ̃, and X0 be the vector field on the space
M constructed therein. Put s1(p) = αp, s2(p) = −βp, α, β ∈ (0, 1), α + β =
1, p =: 2R arctan r, r ∈ I ′, where I ′ = (0,∞) for Q 
= Pn(R) and I ′ = (0, 1)
for Q = Pn(R). Then

X0 =
d

dr
γ(p(r)) =

2
1 + r2

(
αL(1) − βL(2)

)
(5.14)

and γ̃(s) is the normal parametrization of γ̃. Let us show that the vector fields

X0, L, Xλ,i, Yλ,i, X2λ,j , Y2λ,j , i = 1, . . . , q1, j = 1, . . . , q2 (5.15)

form a moving frame in a neighborhood of the curve γ(p), p ∈ (0,diam Q).
To prove this, we shall find the matrix B of pairwise scalar products of these
fields on the curve γ. Since (π̃∗

kg)(L,L) = R2, k = 1, 2, one has

g2(X0,X0)|γ = g2

(
2

1 + r2

(
αL(1) − βL(2)

)
,

2
1 + r2

(
αL(1) − βL(2)

))∣∣
∣
∣
γ

=
4R2

(1 + r2)2
(α2m1 + β2m2) =: a,

g2(L,X0)|γ = g2

(
L(1) + L(2),

2
1 + r2

(
αL(1) − βL(2)

))∣∣
∣
∣
γ

=
2R2

1 + r2
(αm1 − βm2) =: b,

g2(L,L)|γ = (m1 + m2)R2 =: c .

Due to (5.14) and the orthogonality of the fields L(k), k = 1, 2 with respect
to all fields

X
(k)
λ,i , Y

(k)
λ,i , X

(k)
2λ,j , Y

(k)
2λ,j , i = 1, . . . , q1, j = 1, . . . , q2, k = 1, 2

one gets the orthogonality of the vector fields X0, L with respect to the fields
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Xλ,i, Yλ,i, X2λ,j , Y2λ,j , i = 1, . . . , q1, j = 1, . . . , q2 . (5.16)

Proposition 5.1 implies that all possible pairwise scalar products of the fields
(5.16) vanish except of (Xλ,i, Yλ,i), (X2λ,j , Y2λ,j), i = 1, . . . , q1, j = 1, . . . , q2

and scalar squares. By simple calculations, taking into account (5.7)–(5.12),
one obtains

g2(Xλ,i,Xλ,i)|γ = R2
(
m1 cos2(α arctan r) + m2 cos2(β arctan r)

)
=: d,

g2(Xλ,i, Yλ,i)|γ = R2 (−m1 sin(α arctan r) cos(α arctan r)

+m2 sin(β arctan r) cos(β arctan r)) =: h,

g2(Yλ,i, Yλ,i)|γ = R2
(
m1 sin2(α arctan r) + m2 sin2(β arctan r)

)
=: f,

g2(X2λ,j ,X2λ,j)|γ = R2
(
m1 cos2(2α arctan r) + m2 cos2(2β arctan r)

)
=: u,

g2(X2λ,j , Y2λ,j)|γ = R2 (−m1 sin(2α arctan r) cos(2α arctan r)

+m2 sin(2β arctan r) cos(2β arctan r)) =: w,

g2(Y2λ,j , Y2λ,j)|γ = R2
(
m1 sin2(2α arctan r) + m2 sin2(2β arctan r)

)
=: v,

i = 1, . . . , q1, j = 1, . . . , q2 .

Thus, one concludes that the matrix B = g2|γ has a block structure with the
following blocks:

(
a b
b c

)
one time,

(
d h
h f

)
− q1 times and

(
u w
w v

)
− q2 times.

Therefore, it holds detB = (ac− b2)(df − h2)q1(uv −w2)q2 . It is easy to show
that

ac − b2 =
4R4m1m2

(1 + r2)2
, df − h2 =

R4m1m2r
2

1 + r2
, uv − w2 =

4R4m1m2r
2

(1 + r2)2
.

Thus, one gets

detB =
41+q2

(
R4m1m2

)1+q1+q2
r2(q1+q2)

(1 + r2)2+q1+2q2
, (5.17)

(
a b
b c

)−1

=
1

4R2m1m2

(
(1 + r2)2(m1 + m2) −2(1 + r2)(m1α − m2β)

−2(1 + r2)(m1α − m2β) 4(m1α
2 + m2β

2)

)
,

(
d h
h f

)−1

=
(

Ds Es

Es Fs

)
,

(
u w
w v

)−1

=
(

Cs Bs

Bs As

)
, where

Ds =
1 + r2

m1m2R2r2

(
m1 sin2(α arctan r) + m2 sin2(β arctan r)

)
,

Fs =
1 + r2

m1m2R2r2

(
m1 cos2(α arctan r) + m2 cos2(β arctan r)

)
,
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Es =
1 + r2

2m1m2R2r2
(m1 sin(2α arctan r) − m2 sin(2β arctan r)) ,

Cs =
(1 + r2)2

4m1m2R2r2

(
m1 sin2(2α arctan r) + m2 sin2(2β arctan r)

)
,

As =
(1 + r2)2

4m1m2R2r2

(
m1 cos2(2α arctan r) + m2 cos2(2β arctan r)

)
,

Bs =
(1 + r2)2

8m1m2R2r2
(m1 sin(4α arctan r) − m2 sin(4β arctan r)) .

Due to (5.17) vector fields (5.15) form a moving frame on the curve γ(p), p ∈
(0,diam Q) and condition 5.1 is satisfied. Let

Ll,X l
λ,i, Y

l
λ,i,X

l
2λ,j , Y

l
2λ,j , i = 1, . . . , q1, j = 1, . . . , q2 (5.18)

be left-invariant vector fields on the group G, corresponding to elements (5.5)
of the algebra g, and X l

0 = ∂/∂r be a vector field on I ′. We consider the
corresponding fields on the space I ′ × G saving the notations. The field X0

commutes with all fields (5.15). So, due to the Proposition 1.4, the expansion
of the commutator [X,Y ] for X,Y being elements of the frame (5.15), by the
same frame, does not include X,Y . Thus, the second term in the lift H̃0 of
the two-body Hamiltonian H0 onto the space I ′ ×G in accordance with (5.3)
vanishes, since cq

jq = 0 (even without summation over q). Consequently, this
expression has the form:

H̃0 = − (1 + r2)1+
q1
2 +q2

8mR2rq1+q2

∂

∂r
◦
(

rq1+q2

(1 + r2)
q1
2 +q2−1

∂

∂r

)

+
(m1α − m2β)(1 + r2)1+

q1
2 +q2

4m1m2R2rq1+q2
×
{

∂

∂r
,

rq1+q2

(1 + r2)
q1
2 +q2

Ll

}

− m1α
2 + m2β

2

2m1m2R2

(
Ll
)2 − 1

2

q1∑

i=1

(
Ds

(
X l

λ,i

)2
+ Fs

(
Y l

λ,i

)2
+ Es

{
X l

λ,i, Y
l
λ,i

})

− 1
2

q2∑

j=1

(
Cs

(
X l

2λ,j

)2
+ As

(
Y l

2λ,j

)2
+ Bs

{
X l

2λ,j , Y
l
2λ,j

})
, (5.19)

where {X,Y } = X ◦ Y + Y ◦ X is the anticommutator of X and Y , and
m :=

m1m2

m1 + m2
.

According to Sect. 5.1, the lift of the measure, generated by the metric g2,
onto the space I ′ × G has the form µ̃2 = ν ⊗ µG, where ν =

√
detBdr is the

measure on I ′, and µG is the biinvariant measure on the group G. Changing
the normalization one gets ν = rq1+q2dr/(1 + r2)1+

q1
2 +q2 . The calculations

above can be summarized in the following theorem.

Theorem 5.1. The quantum two-body Hamiltonian on a compact two-point
homogeneous space Q with the connected isometry group G can be considered
as the differential operator H̃0 + V (r), where the operator H̃0 on the space
I ′ × G is given by formula (5.19), I ′ = (0, 1) in the case Q = Pn(R) and
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I ′ = (0,∞) in other cases, α, β ∈ (0, 1), α + β = 1. Its domain is dense in
the space L2 (I ′ × G,K0, µ̃2), consisting of all square integrable K0-invariant
functions on I ′ × G, with respect to the measure µ̃2 and right K0-shifts.

5.3 Two-Body Hamiltonian on a Noncompact Two-Point
Homogeneous Space

Noncompact two-point homogeneous spaces of types 7,8,9,10 are analogous
to the compact two-point homogeneous spaces of types 2,4,5,6, respectively.
According to Proposition 1.5 Lie algebras of isometry groups of analogous
spaces are different real forms of a simple complex Lie algebra. The transition
from one such real form to another can be done by multiplying the subspace
p from the decomposition g = k ⊕ p by the imaginary unit i. In the space
M = Q × Q this transition corresponds to the change r → −ir, R → iR, see
Sect. 1.3.3.

Thus, changing variables and vector fields in (5.19) as

r → −ir, R → iR, X l
λ,i → iX l

λ,i, X l
2λ,j → iX l

2λ,j ,

Ll → iLl, Y l
λ,i → iY l

λ,i, Y l
2λ,j → iY l

2λ,j ,

and using (1.30) one gets

Theorem 5.2. The quantum two-body Hamiltonian on a noncompact two-
point homogeneous space Q with the connected isometry group G can be con-
sidered as the differential operator

H̃ = − (1 − r2)1+
q1
2 +q2

8mR2rq1+q2

∂

∂r
◦
(

rq1+q2

(1 − r2)
q1
2 +q2−1

∂

∂r

)

+
(m1α − m2β)(1 − r2)1+

q1
2 +q2

4m1m2R2rq1+q2

{
∂

∂r
,

rq1+q2

(1 − r2)
q1
2 +q2

Ll

}

− m1α
2 + m2β

2

2m1m2R2

(
Ll
)2− 1

2

q1∑

i=1

(
Dh

(
X l

λ,i

)2
+ Fh

(
Y l

λ,i

)2
+ Eh

{
X l

λ,i, Y
l
λ,i

})

− 1
2

q2∑

j=1

(
Ch

(
X l

2λ,j

)2
+ Ah

(
Y l

2λ,j

)2
+ Bh

{
X l

2λ,j , Y
l
2λ,j

})
+ V (r) , (5.20)

on the space I ′ × G, where I ′ = (0, 1),

Dh =
1 − r2

m1m2R2r2

(
m1 sinh2(α arctanh r) + m2 sinh2(β arctanh r)

)
,

Fh =
1 − r2

m1m2R2r2

(
m1 cosh2(α arctanh r) + m2 cosh2(β arctanh r)

)
,

Eh =
1 − r2

2m1m2R2r2
(m1 sinh(2α arctanh r) − m2 sinh(2β arctanh r)) ,

Ch =
(1 − r2)2

4m1m2R2r2

(
m1 sinh2(2α arctanh r) + m2 sinh2(2β arctanh r)

)
,
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Ah =
(1 − r2)2

4m1m2R2r2

(
m1 cosh2(2α arctanh r) + m2 cosh2(2β arctanh r)

)
,

Bh =
(1 − r2)2

8m1m2R2r2
(m1 sinh(4α arctanh r) − m2 sinh(4β arctanh r)) . (5.21)

Its domain is dense in the space L2 (I ′ × G,K0, µ̃2), consisting of all square-
integrable K0-invariant functions on I ′ ×G, with respect to the measure µ̃2 =
ν ⊗ µG and the right K0-shifts. Now

ν =
rq1+q2dr

(1 − r2)1+
q1
2 +q2

is the measure on I ′ and µG is biinvariant measure on G, since G is unimod-
ular.

The following remark is analogous to Remarks 5.1 and 1.1.

Remark 5.2. The space a⊕p2λ generates in the space Q a completely geodesic
submanifold of the constant sectional curvature −R−2, isometric to the space
Hq2+1(R).

If q1 
= 0, the element Λ and an arbitrary nonzero element from the space
pλ generate in Q a completely geodesic two-dimensional submanifolds of the
constant curvature −(2R)−2.

Trajectories of all one-parameter subgroups corresponding to elements of
the space p, passing through the point x0, are geodesics. In particular, it holds
for the elements eλ,i, e2λ,j , i = 1, . . . , q1, j = 1, . . . , q2.

5.4 Connection of the Two-Body Hamiltonian
and the Algebra DiffG(QS)

Now one can express the quantum two-body Hamiltonian with a central po-
tential V (ρ) on an arbitrary two-point homogeneous space Q through radial
differential operators and generators of algebras of invariant differential op-
erators on the unit sphere bundle over Q. This generators were calculated in
Chap. 3, since QS

∼= G/K0. Comparing expression (5.19) with generators of
these algebras one gets

H = − (1 + r2)1+
q1
2 +q2

8mR2rq1+q2

∂

∂r
◦
(

rq1+q2

(1 + r2)
q1
2 +q2−1

∂

∂r

)
− m1α

2 + m2β
2

2m1m2R2
D2

0

+
(m1α − m2β)(1 + r2)1+

q1
2 +q2

4m1m2R2rq1+q2

{
∂

∂r
,

rq1+q2D0

(1 + r2)
q1
2 +q2

}
(5.22)

− 1
2

(DsD1 + FsD2 + 2EsD3 + CsD4 + AsD5 + 2BsD6) + V (r) ,

for Q = Pn(H), q1 = 4n − 4, q2 = 3 and Q = P2(Ca), q1 = 8, q2 = 7 ;

H = − (1 + r2)n+1

8mR2r2n−1

∂

∂r
◦
(

r2n−1

(1 + r2)n−1

∂

∂r

)
− m1α

2 + m2β
2

2m1m2R2
(D0)

2
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+
(m1α − m2β)(1 + r2)n+1

4m1m2R2r2n−1

{
∂

∂r
,

r2n−1

(1 + r2)n
D0

}
(5.23)

− 1
2
(
DsD1 + FsD2 + 2EsD3 + CsD

2
4 + AsD

2
5 + Bs{D4,D5}

)
+ V (r) ,

for Q = Pn(C);

H = − (1 + r2)n

8mR2rn−1

∂

∂r
◦
(

rn−1

(1 + r2)n−2

∂

∂r

)
− m1α

2 + m2β
2

2m1m2R2
D2

0 (5.24)

+
(m1α − m2β)(1 + r2)n

4m1m2R2rn−1

{
∂

∂r
,

rn−1D0

(1 + r2)n−1

}

− 1
2

(CsD1 + AsD2 + 2BsD3) + V (r) ,

for Q = Pn(R), Sn, n � 3 and

H = − (1 + r2)2

8mR2r

∂

∂r
◦
(

r
∂

∂r

)
+

(m1α − m2β)(1 + r2)2

4m1m2R2r

{
∂

∂r
,

rD0

1 + r2

}

− m1α
2 + m2β

2

2m1m2R2
D2

0 − 1
2
(
CsD

2
1 + AsD

2
2 + Bs{D1,D2}

)
+ V (r),

(5.25)

for Q = P2(R), S2.
The analogous expressions for noncompact spaces can be obtained by the

substitution r → −ir, R → iR, Di → ciD̄i, where ci = ±1,±i (see Chap. 3),
taking into account that

Ds → −Dh, Fs → Fh, Es → −iEh, Cs → −Ch, As → Ah, Bs → −iBh .

They are

H = − (1 − r2)1+
q1
2 +q2

8mR2rq1+q2

∂

∂r
◦
(

rq1+q2

(1 − r2)
q1
2 +q2−1

∂

∂r

)
− m1α

2 + m2β
2

2m1m2R2
D̄2

0

+
(m1α − m2β)(1 − r2)1+

q1
2 +q2

4m1m2R2rq1+q2

{
∂

∂r
,

rq1+q2D̄0

(1 − r2)
q1
2 +q2

}
(5.26)

− 1
2
(
DhD̄1 + FhD̄2 + 2EhD̄3 + ChD̄4 + AhD̄5 + 2BhD̄6

)
+ V (r),

for Q = Hn(H), q1 = 4n − 4, q2 = 3 and Q = H2(Ca), q1 = 8, q2 = 7;

H = − (1 − r2)n+1

8mR2r2n−1

∂

∂r
◦
(

r2n−1

(1 − r2)n−1

∂

∂r

)
− m1α

2 + m2β
2

2m1m2R2

(
D̄0

)2

+
(m1α − m2β)(1 − r2)n+1

4m1m2R2r2n−1

{
∂

∂r
,

r2n−1

(1 − r2)n
D̄0

}
(5.27)

− 1
2
(
DhD̄1 + FhD̄2 + 2EhD̄3 + ChD̄2

4 + AhD̄2
5 + Bh{D̄4, D̄5}

)
+ V (r),

for Q = Hn(C);
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H = − (1 − r2)n

8mR2rn−1

∂

∂r
◦
(

rn−1

(1 − r2)n−2

∂

∂r

)
− m1α

2 + m2β
2

2m1m2R2
D̄2

0 (5.28)

+
(m1α − m2β)(1 − r2)n

4m1m2R2rn−1

{
∂

∂r
,

rn−1D̄0

(1 − r2)n−1

}

− 1
2
(
ChD̄1 + AhD̄2 + 2BhD̄3

)
+ V (r) ,

for Q = Hn(R), n � 3 and

H = − (1 − r2)2

8mR2r

∂

∂r
◦
(

r
∂

∂r

)
+

(m1α − m2β)(1 − r2)2

4m1m2R2r

{
∂

∂r
,

rD̄0

1 − r2

}

− m1α
2 + m2β

2

2m1m2R2
D̄2

0 − 1
2
(
ChD̄2

1 + AhD̄2
2 + Bh{D̄1, D̄2}

)
+ V (r) ,

(5.29)

for Q = H2(R) (everywhere in (5.26)–(5.29) we suppose 0 < r < 1).
The main difference of these expressions from Euclidean case is the pres-

ence of noncommutative operators with coefficients depending on r. This dif-
ference makes the two-body problem on two-point homogeneous spaces quite
difficult. However, every common eigenfunction of generators Di gives an iso-
lated ordinary differential equation for a radial part of an eigenfunction for
H. Using this approach some exact spectral series for the two-body problem
on Sn will be found for several potentials below. For other two-point compact
homogeneous spaces similar calculations should be more difficult.

Remark 5.3. Informally, the more independent operators commute with a
Hamiltonian, the closer a quantum system is to integrability. Expressions
(5.22)–(5.29) for two-body Hamiltonians seem to be complicated, nevertheless
in the case of the trivial potential V ≡ 0 each of them evidently could be rep-
resented as the sum of two commuting operators H1 and H2, corresponding
to independent particles. One of these operator is proportional to 1/m1 and
another one to 1/m2. For instance the Hamiltonian (5.26) is H1 +H2 +V (r),
where

H1 = − (1 + r2)1+
q1
2 +q2

8m1R2rq1+q2

∂

∂r
◦
(

rq1+q2

(1 + r2)
q1
2 +q2−1

∂

∂r

)

− β2

2m1R2
D2

0

− β(1 + r2)1+
q1
2 +q2

4m1R2rq1+q2

{
∂

∂r
,

rq1+q2D0

(1 + r2)
q1
2 +q2

}

− 1 + r2

2m1R2r2

(
sin2(β arctan r)D1 + cos2(β arctan r)D2 − sin(2β arctan r)D3

)

− (1 + r2)2

8m1R2r2

(
sin2(2β arctan r)D4 + cos2(2β arctan r)D5 − sin(4β arctan r)D6

)
,

H2 = − (1 + r2)1+
q1
2 +q2

8m2R2rq1+q2

∂

∂r
◦
(

rq1+q2

(1 + r2)
q1
2 +q2−1

∂

∂r

)

− α2

2m2R2
D2

0

+
α(1 + r2)1+

q1
2 +q2

4m2R2rq1+q2

{
∂

∂r
,

rq1+q2D0

(1 + r2)
q1
2 +q2

}
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− 1 + r2

2m2R2r2

(
sin2(α arctan r)D1 + cos2(α arctan r)D2 + sin(2α arctan r)D3

)

− (1 + r2)2

8m2R2r2

(
sin2(2α arctan r)D4 + cos2(2α arctan r)D5 + sin(4α arctan r)D6

)
.

However, it is not clear if it is possible to incorporate a nontrivial potential
into operators H1,H2 not disturbing their commutativity and in such a way
that it would be H = H1 + H2.



6

Particle in a Central Field on Two-Point
Homogeneous Spaces

In this chapter we consider the one-body problem in a central potential on
two-point homogeneous Riemannian spaces. In Sect. 6.1 we prove its non-
commutative integrability for such spaces different from constant curvature
spaces.

The other part of this chapter deals with the classical and quantum one-
body problems in central potentials in constant curvature spaces. There are
many similarities between these problems and their Euclidean counterparts.
Namely there are the Newton-Coulomb and oscillator potentials here, which
imply the motion of a classical particles along conic trajectories. The solution
of the Kepler problem in these spaces also satisfies analogs of the Kepler laws.
The corresponding quantum problems are exactly solvable. These results are
collected together for the first time.

The last section of the present chapter describes the history of these prob-
lems since the rise of the noneuclidean geometry.

6.1 Integrability of the One-Particle Motion
in a Central Field on Two-Point Homogeneous Spaces

Here we shall prove the noncommutative integrability according to Defini-
tion 4.4 of a classical one-body motion in a central field on an arbitrary two-
point homogeneous space Q. To do this it is enough to consider only the spaces
P2(Ca),P2(H),P2(C),P2(R),S2. Indeed, it is obvious from the consideration
of the isometry group for spaces Pn(H),Pn(C),Pn(R),Sn that there is a to-
tally geodesic subspace Q′, isometric respectively to P2(H),P2(C),P2(R),S2,
containing both the center of the potential and an initial position of the
particle such that an initial velocity of the particle is tangent to Q′. This
means that the particle will always move along Q′. The standard transi-
tion from spaces P2(Ca),Pn(H),Pn(C),Sn to their noncompact analogous
will give mutatis mutandis the integrability of a one-body motion on spaces
H2(Ca),Hn(H),Hn(C),Hn(R) for all central potentials.

A.V. Shchepetilov: Calculus and Mechanics on Two-Point Homogeneous Riemannian Spaces,
Lect. Notes Phys. 707, 127–160 (2006)
DOI 10.1007/3-540-35386-0 6 c© Springer-Verlag Berlin Heidelberg 2006
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6.1.1 The Motion on Spaces P2(Ca), P2(H), P2(C)

Here we use notations from Sects. 1.2, 4.2.3, 4.3.2 and results of Chap. 3.
Denote by Q one of the spaces P2(Ca),P2(H),P2(C) and by M = T ∗Q the
phase space of the one-body problem on Q.

The symmetry group of the one-body problem in an arbitrary central
potential is the subgroup of the isometry group of Q conserving a center x0

of a central potential V . This group was denoted above as K. The stationary
subgroup of the group K, corresponding to a point x ∈ Q, x 
= x0, x /∈ Ax0 , is
the group K0 conserving two points in Q in general position and the geodesic
γ̃, joining them (see Proposition 1.1). Let x = γ̃(t), where t is the natural
parameter. According to Lemma 5.2 one has

⋃

t∈(0,diam Q)

Kγ̃(t) = I × (K/K0) = Q′,

where I = (0,diam Q), Q′ is an open dense subspace in Q and

mes(Q\Q′) = mes ((x0) ∪ Ax0) = 0

for the measure mes on the space Q, induced by the Riemannian metric.
Let hs be the Hamiltonian function for the one-body problem on Q, de-

fined on T ∗Q′ = T ∗I × T ∗(K/K0). It is K0-invariant and therefore can be
expressed through coordinates on T ∗I and generators of the Poisson algebra
P (T ∗(K/K0))

K (cf. Sect. 4.3.2).
In notations of Proposition 1.2 the Lie algebra of the group K is k =

k0 ⊕ kλ ⊕ k2λ, where k0 is the Lie algebra of the group K0, kλ and k2λ are
AdK0-invariant subspaces in k, dimR kλ = q1, dimR k2λ = q2.

In order to find generators of the Poisson algebra P (T ∗(K/K0))
K , we are

to calculate the base AdK0-invariant elements in the commutative algebra
S(kλ ⊕ k2λ) (see Theorem 4.5). It was shown in Chap. 3 that restrictions of
the Killing form Kilg onto kλ and k2λ are the only invariants of AdK0 |kλ

and
AdK0 |k2λ

actions respectively. Besides, the AdK0 |kλ⊕k2λ
action is transitive

on the direct product of two spheres Sq1−1 ×Sq2−1 embedded in the standart
way into kλ ⊕ k2λ.

This implies that the Poisson algebra P (T ∗(K/K0))
K is freely generated

by elements p2, p5, which correspond to invariant operators D2 and D5 from
(3.2). Since [D2,D5] = 0, the isomorphism (4.34) gives [p2, p5]P = 0 and the
Poisson algebra P (T ∗(K/K0))

K is commutative. In other words, the space
K/K0 is commutative.

Due to Proposition 4.10 and formula (4.38) it is easy to derive the expres-
sion for the one-body Hamiltonian function hs from the two-body quantum
Hamiltonian in Sect. 5.4 in the limiting case of m2 = ∞, β = 0. In this case
m = m1,

As =
(1 + r2)2

4mR2r2
, Fs =

1 + r2

mR2r2
, Bs = Cs = Ds = Es = 0 ,

and one gets
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hs =
(1 + r2)2

8mR2
p2

r +
1 + r2

2mR2r2

(
p2 +

1 + r2

4
p5

)
+ V (r) , (6.1)

where [p2, p5]P = [p2, r]P = [p2, r]P = [p5, r]P = [p5, pr]P = 0, [r, pr]P =
1. Here and below we identify the functions p2, p5 on T ∗(K/K0) with the
functions p2 ◦ π̃, p5 ◦ π̃ on T ∗Q′ and the function V on Q′ with V ◦ π4, where

π̃ : T ∗I × T ∗(K/K0) → T ∗(K/K0), π4 : T ∗Q′ → Q′

are canonical projections.
Assumption 4.1 is valid for M = T ∗Q′, since Q′ is a submanifold of an

algebraic variety, K is an algebraic group and invariants p2, p5 are rational
functions of algebraic coordinates on Q′ and corresponding coordinates on
fibers.

Thus, Remark 4.4 implies the noncommutative integrability of all Hamil-
tonian systems on T ∗(K/K0) with Hamiltonian functions of the form P (p2, p5),
where P is a polynomial. Therefore, the one-particle system on Q with an ar-
bitrary central potential is also integrable in noncommutative sense since the
Hamiltonian function hs itself is another independent integral of motion and
dim T ∗I = 2.

The Hamiltonian reduction in this case is simple. The reduced phase space
is T ∗I and the reduced Hamiltonian function is (6.1) with p2, p5 = const. This
reduced system describes the evolution of the distance between particle and
the center of the potential.

In notations of Sects. 4.2.3 and 4.3.2 it holds F2 = P (T ∗(K/K0))
K and

commutativity of the Poisson algebra F2 gives dindF = ddimF2 = 2 due
to Remark 4.2. Therefore, a general common value set in T ∗(K/K0) of inde-
pendent functions from the Poisson algebra F is a 2-dimensional submanifold
due to the same remark. Thus, a general common value set in T ∗Q′ of inde-
pendent functions from F and the Hamiltonian function hs is a 3-dimensional
submanifold in T ∗Q′. In this context the existence of nontrivial potentials,
for which all bounded trajectories are closed, seems to be dubious. Below we
shall see that for spaces S2,P2(R) and H2(R) such potentials exist.

6.1.2 One Particle Motion on S2, P2(R) and H2(R)

Conserve here notations from the previous section and describe only the dif-
ference from it. In the present case we have q1 = 0, q2 = 1, k0 = kλ = 0, k = k2λ;
the group K is isomorphic to S1 and the group K0 is trivial. The Poisson alge-
bra P (T ∗K)K is generated by one element p2, corresponding to the operator
D2 from Sect. 3.4 in the case n = 2.

Using the same limiting procedure as in the previous section one gets the
one-body Hamiltonian function for spaces S2,P2(R) in the form

hs =
(1 + r2)2

8mR2

(
p2

r +
p2
2

r2

)
+ V (r) . (6.2)

Again the reduced space is T ∗I and the reduced Hamiltonian function
(6.2) with p2 = const describes the evolution of the distance between particle
and the center of the potential.
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Results for the hyperbolic plane are completely similar. Using the metric
(1.25) one obtains the one-particle Hamiltonian function for the hyperbolic
plane H2(R) in the form

hh =
(1 − r2)2

8mR2

(

p2
r +

p2
ϕ

r2

)

+ V (r), r < 1 . (6.3)

6.2 Particle Motion in Bertrand Potentials
on Constant Curvature Spaces

The content of this section was known more then a century ago, but it is
not well known. The history and corresponding references can be found in
Sect. 6.4.

Expression (6.2) can be easily obtained in more direct way. Indeed, due to
(4.37) and (1.19) the Hamiltonian function for the natural one-body system
in a central potential is obtained in the form (6.2), where p2 is equal to the
angular momentum pϕ, corresponding to the angular coordinate ϕ. Evidently,
pϕ is an integral of motion.

Using metrics (1.20) and (1.26) rewrite Hamiltonian functions (6.2) and
(6.3) in the forms

hs =
(1 + v2)2

2mR2
p2

v +
1 + v2

2mv2R2
p2

ϕ + V (v), 0 < v < ∞ (6.4)

hh =
(1 − v2)2

2mR2
p2

v +
1 − v2

2mv2R2
p2

ϕ + V (v), 0 < v < 1 . (6.5)

For Euclidean plane E2 with the metric dρ2 + ρ2dϕ2 one has the one-particle
Hamiltonian function in the form

he =
1

2m

(

p2
ρ +

p2
ϕ

ρ2

)

+ V (ρ), 0 < ρ < ∞ . (6.6)

The second Kepler law for Euclidean plane is valid for all central potentials
and means that the line segment joining the point ρ = 0 and the particle posi-
tion sweeps out equally large areas within equally long periods of time. If one
substitute words “the line segment” for “the shortest geodesic segment”, this
law will not be valid in spaces S2,P2(R) and H2(R). However, the following
form of the second Kepler law is valid for spaces E2, S2,P2(R) and H2(R):
the geodesic segment starting from the center O of a potential in a direction of
a particle position P and having the length two times more than the dist(O,P )
sweeps out equally large areas within equally long periods of time.1

Indeed, in the hyperbolic case the area of a thin geodesic sector, being
swept out by the shortest geodesic segment of a length ρ, joining the point O
with the point v, ϕ, is
1 For the spaces Q = S2,P2(R) one should additionally require that dist(O, P )

< 1
2

diam Q or consider the area, being swept out, with the corresponding multi-
plicity.
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dSv = R2dϕ

v∫

0

vdv

(1 − v2)3/2
= R2

(
1√

1 − v2
− 1
)

dϕ ,

where dϕ is an angle increment. Due to formula (1.27) if a coordinate ṽ corre-
sponds to the similar geodesic segment of the length 2ρ, then ṽ = 2v/(1 + v2)
and

dSṽ =
2R2v2

1 − v2
dϕ

that implies
dSṽ

dt
=

2R2v2ϕ̇

1 − v2
=

2pϕ

m
= const .

The proof in the spherical case is completely similar and in Euclidean case is
evident.

It is well known [5, 8] that there are two central special potentials in
Euclidean space En, the Coulomb and the isotropic harmonic oscillator ones,
for which all finite trajectories of a classical particle are closed, provided that
they exist. The problem of finding such potentials is known as Bertrand one
and was solved by Bertrand in [15]. We will refer such potentials as Bertrand
ones.

Consider the generalization of the Bertrand problem onto constant curva-
ture spaces. Here we will reduce this generalization to the original Bertrand
problem in Euclidean space.

Let w = −1/(vR) for the spaces S2, H2(R) and w = −1/ρ for Euclidean
plane E2. Straightforward calculations for Hamiltonian functions (6.4), (6.5)
and (6.6) lead to the equation

pϕ
dw

dϕ
=
√

2m(E − V (w)) − p2
ϕ(w2 + κ), pϕ = const,

where κ is the curvature: κ = 0 for E2, κ = 1/R2 for S2 and κ = −1/R2 for
H2(R); E is a constant value of the Hamiltonian function. Thus, the equation
for trajectories in coordinates w,ϕ is

ϕ =
∫

pϕdw
√

2m(E − V (w)) − p2
ϕ(w2 + κ)

. (6.7)

Since the constant term p2
ϕκ can be united with the arbitrary constant term

2E, the form of Bertrand potentials in all three cases are the same w.r.t. the
variable w.

For Euclidean space the solutions of the Bertrand problem is Vc = γw
(Coulomb potential) and Vo = γw−2, γ > 0 (isotropic harmonic oscillator po-
tential) [5, 8]. Thus, one gets generalizations of these potentials: Vc = −γ/(vR)
(Coulomb potential) and Vo = γv2R2 (isotropic oscillator potential) for spaces
Sn and Hn(R).

Remark 6.1. Note that some authors [12, 73] normalize the potential Vc for
the space Hn(R) in such a way that Vc → 0 on the absolute, i.e., as v → 1.
This gives the expression
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Vc =
γ

R

(
1 − 1

v

)
.

In this case the summand γ/R should be included in all corresponding formulas
below as the energy shift.

The singularity of the oscillator potential divides the sphere S2 into two
separate domains of motion along the equator ρ = πR/2. For the factor space
P2(R) ∼= S2/Z2 this singularity is concentrated in one point, most far from
the potential center.

6.2.1 The Kepler Problem

Consider first the motion in the potential Vc or the Kepler problem. Let ρ be
the distance from the point v = 0. Using formulas (1.21) and (1.27) one can
normalize Vc in the following way

Vc,h = −γm

R
coth

ρ

R
, Vc,s = −γm

R
cot

ρ

R
, γ > 0 ,

where subscript “h” means “hyperbolic”, subscript “s” means “spherical” and
it holds

Vc,h, Vc,s → Vc,e := −γm/ρ as R → +∞ .

As in Euclidean case the Coulomb potential Vc(ρ) in spaces S3 and H3(R) is
inversely proportional to the area of a sphere of the radius ρ.

Renormalizing if necessarily the energy E and the momentum pϕ we will
suppose below m = 1. Calculating the integral in (6.7) one gets the particle
trajectory in the form

v(ϕ) =
p

1 + e cos ϕ
, p :=

p2
ϕ

γR
, e :=

√

1 +
2p2

ϕ

γ2

(
E −

κp2
ϕ

2

)
, (6.8)

where the null value of ϕ corresponds to the pericentre. This form of the
trajectory coincides with the polar equation for conics (ellipse, hyperbola and
parabola) on Euclidean plane. Below we shall see that this similarity is more
deep.

Kepler Problem in the Hyperbolic Space

For the particles trajectory one has

2
(
E +

γ

vR

)
−

p2
ϕ

R2

(
1
v2

− 1
)

� 0, for 0 � v < 1

and therefore

E � Ṽ (v) :=
p2

ϕ

2R2

(
1
v2

− 1
)
− γ

vR
� Ṽmin =






− γ

R
, if

p2
ϕ

γR
� 1,

−
p2

ϕ

2R2
− γ2

2p2
ϕ

, if
p2

ϕ

γR
< 1 .
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Note that
p

1 + e
< 1 for every admissible values of E, pϕ and the trajectory

defined by (6.8) (in the unit circle v < 1) is connected. In the case p2
ϕ/(γR) � 1

the function Ṽ (v) has no local minima for 0 < v < 1 and the motion is infinite
for all E � −γ/R. In the case p2

ϕ/(γR) < 1 the motion is finite (i.e., the
trajectory is compact in the unit circle v < 1) if

− p2
ϕ/(2R2) − γ2/(2p2

ϕ) � E < −γ/R (6.9)

and infinite if E � −γ/R.
An ellipse on Euclidean plane E2 is defined as the set of points x ∈ E2 for

those
dist(x, f1) + dist(x, f2) = 2a = const (6.10)

for two focuses f1, f2 ∈ E2 such that 2c := dist(f1, f2) < 2a, see Fig. 6.1.

Fig. 6.1. Ellipse

�� �� �

�

2a − ρ
ρ

f1 f22c

ϕ

It is easily verified using the cosine theorem that

ρ(ϕ) =
pe

1 + εe cos ϕ
, pe =

a2 − c2

a
, εe =

c

a
.

Consider the same definition of an ellipse on the hyperbolic plane H2(R) (see
again Fig. 6.1). The hyperbolic cosine theorem now gives

cosh
2a − ρ

R
= cosh

2c

R
cosh

ρ

R
+ sinh

2c

R
sinh

ρ

R
cos ϕ

that implies
v(ϕ) = tanh

ρ

R
=

ph

1 + εh cos ϕ
, (6.11)

for

ph =
cosh

2a

R
− cosh

2c

R

sinh
2a

R

, εh =
sinh

2c

R

sinh
2a

R

. (6.12)

Due to its definition an ellipse is a finite curve and therefore
ph

1 − εh
< 1 or

ph + εh < 1 . (6.13)
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On the other hand, if (6.13) is fulfilled, then (6.11) defines an ellipse with
some a > c > 0 derived from (6.12). Note that for parameters p and e defined
in (6.8) the inequality p + e < 1 is equivalent to E < −γ/R.

Thus, one sees that the particle trajectory defined by (6.8) for E < −γ/R
is an ellipse with one focus in the centre of the potential Vc. This is the first
Kepler law for the hyperbolic plane.

It is easily seen that for this ellipse it holds

R tanh
2a

R
= R

vmax + vmin

1 + vmaxvmin
= − γ

E
, (6.14)

where vmax = v|ϕ=π = p/(1 − e), vmin = v|ϕ=0 = p/(1 + e) and the major
ellipse semiaxis a does not depend upon the momentum pϕ.

The period T of the particle motion along the elliptic orbit can be obtained
as

T = 2

vmax∫

vmin

R2dv

(1 − v2)

√

2R2(E +
γ

Rv
) + p2

ϕ

v2 − 1
v2

=
πR√

2







1
√
− γ

R
− E

− 1
√

γ

R
− E





 .

Its independence on pϕ is of a general nature. Indeed, due to the Gordon
theorem [51] (see also [58], Chap. IV) if all trajectories of a Hamiltonian
system lying on some energy level E = const are closed, then their periods
are the same. Using (6.14) one can express the period T through the major
semiaxis a:

T =
πR3/2

√
2γ







1
√

coth
2a

R
− 1

− 1
√

coth
2a

R
+ 1





 =

2π
√

γ

√
R3 sinh3 a

R
cosh

a

R
.

(6.15)
This formula is known as the third Kepler law for the hyperbolic plane [103,
105].

Consider now infinite trajectories. The Beltrami-Klein model (see
Sect. 1.3.3) of the hyperbolic plane is based upon the one-to-one correspon-
dence between points of a one sheet of the two-sheet hyperboloid (1.22) in
space R

3 endowed with the Minkowski metric (1.23) (for n = 3) and points
of the circle

DR :=
(
x ∈ R

3
∣
∣ x3 = R, x2

1 + x2
2 < R2

)
.

This correspondence is established by the central projection from the point
0 ∈ R

3. This means that Euclidean conics in DR (in particular defined by the
equation v = ph/(1 + εh cos ϕ), for x1 = Rv cos ϕ, x2 = Rv sinϕ) correspond
to the curves on this hyperboloid, which are cut by cones in R

3 with their
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common vertex at the point 0 ∈ R
3. Such curves on the hyperboloid and

their images in DR can be considered as conics on the hyperbolic plane. The
more detailed description of conics on the hyperbolic plane can be found in
[77, 90, 105, 149] and [186].2

By full analogy with Euclidean case a hyperbola in H2(R) is a set of points
x for those

|dist(x, f1) − dist(x, f2)| = 2a = const (6.16)

for two focuses f1, f2 ∈ H2(R) such that 2c := dist(f1, f2) > 2a, see Fig. 6.2.

Fig. 6.2. Hyperbola
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Using the cosine theorem again one gets (cf. (6.11)) for the right focus f2
in the point v = 0 the equation

v = tanh
ρ

R
=

ph

1 − εh cos ϕ

for the right hyperbola branch and the equation

v = − ph

1 + εh cos ϕ

for the left one, where

ph =
cosh 2c

R − cosh 2a
R

sinh 2a
R

, εh =
sinh 2c

R

sinh 2a
R

> 1 . (6.17)

The hyperbola definition implies −ph/(1 − εh) < 1, i.e.,

εh − ph > 1 . (6.18)

Conversely, parameters ph and εh obeying (6.18), correspond to some hyper-
bola with c > a > 0, defined from (6.17).

2 It seems to be probable that the classification of conics on the hyperbolic plane
was found by W. Story in 1882 [186]. In any case the claim in [77] that it was
found by H. Liebmann in [105] is evidently erroneous.
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If both inequalities (6.13) and (6.18) are violated, then (6.11) defines a one
branch infinite conic with the focus at v = 0. In the boundary case

εh + ph = 1 (6.19)

this curve is called horoellipse [42] or elliptic parabola [105] since it is a “big
ellipse” with one point on the absolute (see Fig. 6.3), coinciding with the
second focus.

Fig. 6.3. Horoellipse

� absolute

�
horoellipse

In another boundary case

εh − ph = 1 (6.20)

one obtains horohyperbola [42] or hyperbolic parabola [105] with the “second
focus” on the absolute. Other one-branch infinite curves (6.11) corresponding
to the inequality

1 − ph < εh < 1 + ph (6.21)

are called in [42, 105, 186] semihyperbolas.
Using formulas (6.18)–(6.21), by direct computations one can easily verify

that the particle trajectory is a horoellipse if E = −γ/R, a semihyperbola if
−γ/R < E < γ/R, a horohyperbola if E = γ/R and a hyperbola if E > γ/R.

The additional integral for the Kepler problem, responsible for the closure
of all bounded trajectories, can be found as a polynomial w.r.t momenta pv

and pϕ of the second degree in one of the two equivalent forms:

I1,h =

(
p2

ϕ

Rv
− γ

)

cos ϕ +
(1 − v2)pvpϕ

R
sin ϕ ,

I2,h =

(
p2

ϕ

Rv
− γ

)

sinϕ − (1 − v2)pvpϕ

R
cos ϕ .

Note that ∂I2,h/∂ϕ = I1,h. These expressions are analogs for the hyperbolic
plane of components of the Runge-Lenz vector in Euclidean case. It is easily
verified that integrals pϕ, I1,h, I2,h and the Hamiltonian function itself
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h =
(1 − v2)2

2R2
p2

v +
1 − v2

2v2R2
p2

ϕ − γ

R
coth

ρ

R

are connected by the identity

I2
1,h + I2

2,h = γ2 + 2p2
ϕ

(

h +
p2

ϕ

2R2

)

.

Kepler Problem on the Sphere

In the spherical case the coordinate ρ is more convenient than v, since the
latter is not continuous on the equator of the sphere. The Hamiltonian function
for m = 1 now is

h =
1
2

(

p2
ρ +

p2
ϕ

R2 sin2 ρ/R

)

− γ

R
cot

ρ

R
.

An ellipse on the sphere S2 is defined by (6.10) as on Euclidean and the
hyperbolic planes above. Now one can suppose that 2a � πR. Otherwise,
if πR < 2a < 2πR, consider diametrically opposite (w.r.t. focuses f1 and f2)
points f̃1, f̃2 as a new pair of focuses. Then dist(x, fi) = πR−dist(x, f̃i), i = 1, 2
and

dist(x, f̃1) + dist(x, f̃2) = 2πR − 2a < πR .

In the case 2a = 2c = πR any point of the sphere satisfies (6.10). In the case
2c < 2a = πR this equation defines the big circle passing through focuses. In
the general case 0 � 2c < 2a < πR from the spherical cosine theorem one has
(see Fig. 6.1):

cos
2a − ρ

R
= cos

2c

R
cos

ρ

R
− sin

2c

R
sin

ρ

R
cos ϕ

that implies

tan
ρ

R
=

cos 2c
R − cos 2a

R

sin 2a
R + sin 2c

R cos ϕ
=

ps

1 + εs cos ϕ
, (6.22)

where

ps =
cos 2c

R − cos 2a
R

sin 2a
R

> 0, εs =
sin 2c

R

sin 2a
R

> 0 . (6.23)

If one replaces one of the ellipse focus by the diametrically opposite point, he
obtains the hyperbola (6.16) and vise versa. This means that in the spherical
case ellipses and hyperbolas coincide.

For the particle trajectory one gets the inequality

E � Ṽ (ρ) :=
p2

ϕ

2R2

(
cot2

ρ

R
+ 1
)
− γ

R
cot

ρ

R
, 0 < ρ < πR .

The function Ṽ (ρ) has one minimum
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Ṽmin =
p2

ϕ

2R2
− γ2

2p2
ϕ

and Ṽ (ρ) → +∞ as ρ → 0 or ρ → πR. Thus, for E � Ṽmin this yields the
elliptic trajectory (if pϕ 
= 0), defined by the equation

tan
ρ

R
=

p

1 + e cos ϕ
, p =

p2
ϕ

γR
, e =

√

1 +
2p2

ϕ

γ2

(
E −

p2
ϕ

2R2

)
,

which is the first Kepler law for the sphere S2. In the case E = Ṽmin the
trajectory is a circle defined by tan ρ

R = p.
For the major ellipse axis 2a one has

tan
2a

R
= tan

(
ρmax + ρmin

R

)
=

tan ρmax
R + tan ρmin

R

1 − tan ρmax
R tan ρmin

R

= − γ

RE
.

This means that for negative energies the major ellipse axis is shorter than a
quarter of a big circle (2a < πR/2) and for positive energies one has πR/2 <
2a < πR. Similarly to (6.15) for the period one gets the equality

T =
2π
√

γ

√
R3 sin3 a

R
cos

a

R
,

which is known as the third Kepler law for the sphere S2 (W. Killing, 1885,
[87]).

Now the additional integrals are

I1,s =

(
p2

ϕ

R
cot

ρ

R
− γ

)

cos ϕ + pρpϕ sinϕ ,

I2,s =

(
p2

ϕ

R
cot

ρ

R
− γ

)

sin ϕ − pρpϕ cos ϕ .

These expressions are spherical analogs of components of the Runge-Lenz vec-
tor in Euclidean case. Again it holds ∂I2,h/∂ϕ = I1,h. The identity, connecting
integrals pϕ, I1,s, I2,s and h is:

I2
1,s + I2

2,s = γ2 + 2p2
ϕ

(

h −
p2

ϕ

2R2

)

.

6.2.2 The Isotropic Oscillator Problem

Normalize the isotropic oscillator potential in such a way that it converges to
the Euclidean expression ω2ρ2/2 as R → +∞

Vo,h =
1
2
ω2R2v2 =

1
2
ω2R2 tanh2 ρ

R
, Vo,s =

1
2
ω2R2v2 =

1
2
ω2R2 tan2 ρ

R
.

Calculating the integral in (6.7) one gets the particle trajectory in the form
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v2(ϕ) =
p2

ϕ/R2

E − 1
2p2

ϕκ −
√

(E − 1
2p2

ϕκ)2 − ω2p2
ϕ cos 2ϕ

. (6.24)

We shall show below that this equation defines an ellipse with its center at
the point v = 0 or an unbounded curve (the latter is possible only in the
hyperbolic case).

The Isotropic Oscillator Problem on the Hyperbolic Plane

For the particles trajectory one has the inequality

E � Ṽ (v) :=
p2

ϕ

2R2

(
1
v2

− 1
)

+
1
2
ω2v2R2 � Ṽmin =






ωpϕ −
p2

ϕ

2R2
, if pϕ < ωR2,

ω2R2

2
, if pϕ � ωR2 .

The motion is finite iff

pϕ < ωR2, ωpϕ −
p2

ϕ

2R2
� E <

ω2R2

2
(6.25)

and infinite for E � ω2R2/2. The period for the finite motion is

T =
2πR√

ω2R2 − 2E
.

The curve defined by (6.24) for κ = −R−2 is an ellipse with the point
v = 0 in its center, provided the curve is finite. Indeed, consider Fig. 6.4,

Fig. 6.4. Ellipse

�� �� �

�

ρ2 ρ1
ρ

f1 f2O

M

ϕ

where ρ1 := dist(f1,M), ρ2 := dist(f2,M), ρ1 + ρ2 = 2a = const, ρ :=
dist(O,M),dist(O, f1) = dist(O, f2) = c .

The cosine theorem implies

cosh
ρ1

R
= cosh

ρ

R
cosh

c

R
− sinh

ρ

R
sinh

c

R
cos ϕ ,

cosh
ρ2

R
= cosh

ρ

R
cosh

c

R
+ sinh

ρ

R
sinh

c

R
cos ϕ .

(6.26)
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Besides, it holds the identity
(

cosh
ρ1 + ρ2

R
− cosh

ρ1

R
cosh

ρ2

R

)2

(6.27)

= sinh2 ρ1

R
sinh2 ρ2

R

=
(
1 − cosh2 ρ1

R

)(
1 − cosh2 ρ2

R

)

=
(
1 + cosh

ρ1

R
cosh

ρ2

R

)2

−
(
cosh

ρ1

R
+ cosh

ρ2

R

)2

.

Substituting expressions (6.26) for cosh ρ1/R, cosh ρ2/R and the expression
ρ1 + ρ2 = 2a into (6.27), one gets

cosh2 a

R
sinh2 a

R
= cosh2 c

R
sinh2 a

R
cosh2 ρ

R
−sinh2 c

R
cosh2 a

R
sinh2 ρ

R
cos2 ϕ .

(6.28)
If ϕ = π/2, then ρ1 = ρ2 = a, ρ = b, where b is the small semiaxis of this
ellipse and cosh a/R = cosh c/R cosh b/R. Excluding c from (6.28) with the
help of the latter equation, one can obtain the ellipse equation in the form:

tanh2(ρ/R)
tanh2(a/R)

cos2 ϕ +
tanh2(ρ/R)
tanh2(b/R)

sin2 ϕ = 1 , (6.29)

which is the analogue of the equation

x2

a2
+

y2

b2
=

ρ2

a2
cos2 ϕ +

ρ2

b2
sin2 ϕ = 1

for an ellipse on Euclidean plane. Another version of (6.29) is

tanh2 ρ

R
=

2 tanh2(a/R) tanh2(b/R)
tanh2(a/R) + tanh2(b/R) −

(
tanh2(a/R) − tanh2(b/R)

)
cos 2ϕ

that coincides with (6.24) for κ = −R−2, provided (6.25) is fulfilled.
Note that

tanh
a

R
= tanh

ρ

R

∣
∣
∣
ϕ=0

, tanh
b

R
= tanh

ρ

R

∣
∣
∣
ϕ= π

2

.

Thus, from (6.24) one finds

tanh2 a

R
= v2(0) =

p2
ϕ/R2

E + 1
2p2

ϕR−2 −
√

(E + 1
2p2

ϕR−2)2 − ω2p2
ϕ

,

tanh2 b

R
= v2(

π

2
) =

p2
ϕ/R2

E + 1
2p2

ϕR−2 +
√

(E + 1
2p2

ϕR−2)2 − ω2p2
ϕ

.

This leads to the equation

tanh
a

R
tanh

b

R
=

pϕ

ωR2
,
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which means that the function of semiaxes on the left hand side does not
depend upon the energy E.

Infinite trajectories of the isotropic oscillator on H2(R) consist of two
symmetric components and have no analogs in Euclidean limit.

The additional integral for the isotropic oscillator problem, responsible for
the closure of all bounded trajectories, can be found as above for the Kepler
problem in one of the two equivalent forms:

J1,h =

(
p2

ϕ

R2v2
− p2

v(1 − v2)2

R2
− ω2R2v2

)

cos 2ϕ + 2
pvpϕ

R2v
(1 − v2) sin 2ϕ ,

J2,h =

(
p2

ϕ

R2v2
− p2

v(1 − v2)2

R2
− ω2R2v2

)

sin 2ϕ − 2
pvpϕ

R2v
(1 − v2) cos 2ϕ .

These expressions are analogous to components of the Fradkin tensor in
Euclidean case. Integrals pϕ, J1,h, J2,h and the Hamiltonian function itself

h =
(1 − v2)2

2R2
p2

v +
1 − v2

2v2R2
p2

ϕ +
1
2
ω2v2R2

are connected by the identity

J2
1,h + J2

2,h =

(

2h +
p2

ϕ

R2

)2

− 4p2
ϕω2 .

The Isotropic Oscillator Problem in the Spherical Case

The Hamiltonian function for m = 1 now is

h =
1
2

(

p2
ρ +

p2
ϕ

R2 sin2 ρ/R

)

+
1
2
ω2R2 tan2 ρ

R
.

The inequality for the energy has the form

E � Ṽ (ρ) :=
p2

ϕ

2R2

(
cot2

ρ

R
+ 1
)

+
1
2
ω2R2 tan2 ρ

R

and thus

E � Ṽmin = pϕω +
p2

ϕ

2R2
.

For all these energies the motion occurs on a hemisphere ρ � πR/2, since
tan2 ρ

R
→ +∞ as ρ → πR/2. Due to this fact one can consider this motion

also as the motion on the projective plane P2(R). Its period is

T =
2πR√

ω2R2 + 2E
.

Now all trajectories are ellipses with their centers at the point ρ = 0. By
full analogy with the hyperbolic case one gets for such ellipses the following
equivalent equations:
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tan2(ρ/R)
tan2(a/R)

cos2 ϕ +
tan2(ρ/R)
tan2(b/R)

sin2 ϕ = 1 ,

tan2 ρ

R
=

2 tan2(a/R) tan2(b/R)
tan2(a/R) + tan2(b/R) −

(
tan2(a/R) − tan2(b/R)

)
cos 2ϕ

,

where a and b are the ellipse semiaxes. Similarly to the hyperbolic case it
holds

tan
a

R
tan

b

R
=

pϕ

ωR2
.

Now the additional integrals (spherical analogs of the Fradkin tensor) are:

J1,s =

(
p2

ϕ

R2
cot2

ρ

R
− p2

ρ − ω2R2 tan2 ρ

R

)

cos 2ϕ + 2
pρpϕ

R
cot

ρ

R
sin 2ϕ ,

J2,s =

(
p2

ϕ

R2
cot2

ρ

R
− p2

ρ − ω2R2 tan2 ρ

R

)

sin 2ϕ − 2
pρpϕ

R
cot

ρ

R
cos 2ϕ .

The identity, connecting integrals pϕ, J1,s, J2,s and the Hamiltonian func-
tion h has the form

J2
1,h + J2

2,h =

(

2h −
p2

ϕ

R2

)2

− 4p2
ϕω2 .

6.3 Quantum Mechanical One-Body Problem
for Bertrand Potentials on Constant Curvature Spaces

Similar to Euclidean case the quantum mechanical one-body problem for
Bertrand potentials on spaces Sn and Hn(R) inherits many symmetric prop-
erties from the classical one.

Note first off all that for both spaces and n = 3 it holds

�(Vc) = 4πγδ , (6.30)

where δ is a distribution, well-known as the delta-function, centered at the
center of the potential Vc. This formula can be derived by the same calculations
as in Euclidean case. Equation (6.30) is another motivation of introducing
the potential Vc, independent on the generalized Bertrand problem. For the
oscillator potential in Euclidean case it holds �(Vo) = const, but it is not
valid for spaces Sn and Hn(R).

Consider the quantum mechanical spectral problem

HV ψ = −1
2
�ψ + V ψ = Eψ ,

for Bertrand potentials V .
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6.3.1 The Hyperbolic Case

Theorem 2.11 implies the self-adjointness of the operator HVc
for n � 2 and

V1 = 0 with its domain Dom(HV ) given by (2.28). The same theorem implies
the self-adjointness of HVo

for n � 2 and V2 = 0 with domain (2.28). Note
that in all cases, except HVc

for n = 2, Theorem 2.10 also can be applied.
Formulae (1.26) and (2.16) yield the Laplace-Beltrami operator in the form

� =
(1 − v2)2

R2

(
∂2

∂v2
+
(

n − 1
v

+
(n − 3)v
1 − v2

)
∂

∂v

)
+

1 − v2

R2v2
�s, 0 < v < 1 ,

(6.31)
where �s is the Laplace-Beltrami operator on the sphere Sn−1 with the stan-
dard metric g̃s.

Similarly to (2.38) one has the following isomorphism of the Hilbert spaces

L2(Hn(R), dµ) ∼= L2((0, 1), dµ1) ⊗ L2
(
Sn−1, dµSn−1

)
,

where µ is the measure on Hn(R) defined by (2.25) for the metric (1.26),

dµ1 =
Rvn−1

(1 − v2)
n+1

2

dv

and dµSn−1 is the measure on Sn−1, defined by (2.25) for the metric g̃s.
For n � 3 the operator �s has a system of eigenfunctions Y

(n)
l,m , full in

L2
(
Sn−1, dµSn−1

)
[199]. Here l = 0, 1, 2, . . . , and m is a multiindex of the

form

m = (m1, . . . ,mn−3,±mn−2), mi ∈ Z, l � m1 � . . . � mn−2 � 0 .

For n = 2 the full system of eigenfunctions for �s is Yl = eilφ, l ∈ Z. The
corresponding eigenvalues in all cases are −l(l + n − 2). The eigenfunction,
corresponding to l = 0 is constant and is supposed to be 1.

Let ψ ∈ Dom(HV ) be an eigenfunction of HV . It can be expanded in the
form

ψ =
∑

l,m

χl,mY
(n)
l,m ,

where χl,m ∈ W 1,2((0, 1), dµ1) and then

HV ψ =
∑

l,m

(
− (1 − v2)2

2R2

(
χ′′

l,m(v) +
(

n − 1
v

+
(n − 3)v
1 − v2

)
χ′

l,m(v)
)

+
(

V +
1 − v2

2R2v2
l(l + n − 2)

)
χl,m(v)

)
Y

(n)
l,m =

∑

l,m

Eχl,m(v)Y (n)
l,m .

Since functions Y
(n)
l,m are linearly independent, one gets the spectral problem

for the radial component χl,m(v) =: χl(v) of the eigenfunction χl,mY
(n)
l,m
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(1 − v2)2

2R2

(
χ′′

l (v) +
(

n − 1
v

+
(n − 3)v
1 − v2

)
χ′

l(v)
)

+
(

E − V − 1 − v2

2R2v2
l(l + n − 2)

)
χl(v) = 0, 0 < v < 1 .

(6.32)

The condition ψ ∈ Dom(HV ) implies the restrictions on asymptotics for χl(v)
as v → +0 and v → 1 − 0.

The Coulomb Problem

Suppose n � 2, V = Vc = − γ

Rv
. Now (6.32) looks like

χ′′
l (v) +

(
n − 1

v
+

(n − 3)v
1 − v2

)
χ′

l(v) (6.33)

+
(

2ER2

(1 − v2)2
− l(l + n − 2)

v2(1 − v2)
+

2Rγ

v(1 − v2)2

)
χl(v) = 0 , 0 < v < 1 .

Comparing it with (B.1) one concludes that the last equation in the com-
plex plane is a Fuchsian one with singular points ±1, 0. The point ∞ is regular
that can be verified by the substitution v = ζ−1, ζ → 0.

Calculations of the characteristic exponents at these points leads to the
expressions:

ρ
(1)
1 =

n − 1 +
√

(n − 1)2 − 8R(ER + γ)
4

,

ρ
(1)
2 =

n − 1 −
√

(n − 1)2 − 8R(ER + γ)
4

,

ρ
(−1)
1 =

n − 1 +
√

(n − 1)2 − 8R(ER − γ)
4

,

ρ
(−1)
2 =

n − 1 −
√

(n − 1)2 − 8R(ER − γ)
4

,

ρ
(0)
1 = l, ρ

(0)
2 = 2 − l − n .

Moreover, (6.33) is the Riemannian equation of the form (B.2) with ρ
(±1)
2 �

ρ
(±1)
1 , ρ

(0)
2 � ρ

(0)
1 .

The condition χlY
(n)
l,m ∈ Dom(HVc

) implies that

∫ 1

0

χ2
l v

n−1dv

(1 − v2)
n+1

2

< ∞ , (6.34)

�
(
χlY

(n)
l,m

)
∈ L2

loc(H
n(R), dµ) . (6.35)

Inequality (6.34) gives ρ(0) > −n/2 and ρ(1) > (n−1)/4, if χl ∼ vρ(0)
as v → 0

and χl ∼ vρ(1)
as v → 1. Since the inequality ρ

(0)
2 = 2− l − n > −n/2 implies

n < 2(2 − l), the asymptotic χl ∼ vρ
(0)
2 contradicts to n � 2 for l � 1. If
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l = 0, then n = 3 or n = 2. For n = 3, l = 0 the asymptotic χ0 ∼ vρ
(0)
2 = 1/v

leads to �χl(v) ∼ δ(0) that contradicts to (6.35). In the case n = 2, l = 0 it
holds ρ

(0)
1 = ρ

(0)
2 = 0 and the theory of Fuchsian equations [50] implies that

canonical asymptotics of a solution for (6.33) near v = 0 are 1 and log v. The
latter asymptotic again leads to �χl(v) ∼ δ(0) that contradicts to (6.35).
Thus, it should be χl ∼ vρ

(0)
1 as v → 0.

The inequality

ρ
(1)
1,2 =

n − 1 ±
√

(n − 1)2 − 8R(ER + γ)
4

>
n − 1

4

implies that it should be χl ∼ (v − 1)ρ
(1)
1 as v → 1 and

(n − 1)2 − 8R(ER + γ) > 0 . (6.36)

Conversely if χl ∼ vρ
(0)
1 as v → 0, χl ∼ (v − 1)ρ

(1)
1 as v → 1 and inequality

(6.36) is valid, then χlY
(n)
l,m ∈ Dom(HVc

).
According to the general theory (see appendix B) (6.33) can be reduced

to the hypergeometric equation by the substitution

z :=
v − 1
2v

, wl(z) := χl(v)
(

v

1 − v

)ρ
(1)
1
(

v

1 + v

)ρ
(−1)
2

.

By expressions
(

v

1 + v

)ρ
(−1)
2

and
(

v

1 + v

)ρ
(1)
1

we mean here branches of multifunctions, which are holomorphic on the ex-
panded complex plane C ∪ ∞ with the cut along [−∞, 0] ∪ [1,+∞] and are
real on the segment [0, 1].

This substitution moves the singular points 0, 1,−1 respectively into
∞, 0, 1 and the real interval (0, 1) into (−∞, 0). The function wl(z) satis-
fies (B.5) and its characteristic exponents are as follows: at the point z = ∞
they are

α = ρ
(1)
1 + ρ

(−1)
2 + ρ

(0)
1 =

n − 1
2

+ l

+
1
4

(√
(n − 1)2 − 8R(ER + γ) −

√
(n − 1)2 − 8R(ER − γ)

)
,

β = ρ
(1)
1 + ρ

(−1)
2 + ρ

(0)
2 =

3 − n

2
− l

+
1
4

(√
(n − 1)2 − 8R(ER + γ) −

√
(n − 1)2 − 8R(ER − γ)

)
< α ;

at the point z = 0 they are 0 and

1 − γ̃ := ρ
(1)
2 − ρ

(1)
1 = −1

2

√
(n − 1)2 − 8R(ER + γ) ;
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and at the point z = 1 they are 0 and γ̃−α−β. Note that α−β = n+2l−2 =:
l1 � 1.

The function wl(z) for −∞ < z < 0 corresponds to the function χl(v)
for 0 < v < 1 and should has asymptotics wl(z) ∼ z−α as z → −∞ and
wl(z) ∼ const as z → 0. According to appendix B it means that

wl(z) = F (α, β; γ̃; z) and lim
z→−∞

F (α, β; γ̃; z)zβ = 0 .

Due to (B.13) for α − β = l1 ∈ N it holds

lim
z→−∞

F (α, β; γ̃; z)(−z)β =
Γ(γ̃)Γ(l1)

Γ(γ̃ − β)Γ(α)
. (6.37)

The gamma-function has no zeros in C and has poles at the points 0,−1,−2,
. . .. Since γ̃ > 0 and

γ̃ − β =
n − 1

2
+ l +

1
4

(√
(n − 1)2 − 8R(ER + γ)

+
√

(n − 1)2 − 8R(ER − γ)
)

> 0,

it should be α = −k + 1, k ∈ N or equivalently
√

(n − 1)2 − 8R(ER + γ) −
√

(n − 1)2 − 8R(ER − γ) = −4(k + l) − 2n + 6 .

Multiplying the last equation by
√

(n − 1)2 − 8R(ER + γ) +
√

(n − 1)2 − 8R(ER − γ)

one gets

√
(n − 1)2 − 8R(ER + γ) +

√
(n − 1)2 − 8R(ER − γ) =

8Rγ

2(k + l) + n − 3
.

Taking into account (6.36), one gets

√
(n − 1)2 − 8R(ER + γ) =

4Rγ

2(k + l) + n − 3
− (2(k + l) + n − 3) > 0 .

This leads to the final formula

Ek,l =
(n − 1)2

8R2
− 2γ2

(2(k + l) + n − 3)2
(6.38)

− (2(k + l) + n − 3)2

8R2
, 1 � k <

√
Rγ +

3 − n

2
− l .

For α = −k + 1, k ∈ N the function F (α, β; γ̃; z) is a polynomial of (k − 1)th
degree and the radial part of the eigenfunction has the form:

χk,l(v) =
(

1 − v

v

)ρ
(1)
1
(

1 + v

v

)ρ
(−1)
2 k−1∑

i=0

(1 − k)i(3 − k − n − 2l)i

i!(γ̃)i

(
v − 1
2v

)i

,

(6.39)
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where

γ̃ =
5 − n

2
− k − l +

2Rγ

2(k + l) + n − 3
, ρ

(1)
1 =

1 − k − l

2
+

Rγ

2(k + l) + n − 3
,

ρ
(−1)
2 =

1 − k − l

2
− Rγ

2(k + l) + n − 3
.

Let us make some remarks, concerning formulae (6.38) and (6.39). In the
limit R → ∞ formula (6.38) gives the energy levels for the Coulomb problem
in Euclidean space

Ek,l = − 2γ2

(2(k + l) + n − 3)2
, k ∈ N .

For n = 3 it is the Balmer formula. Eigenfunctions (6.39) also converge to
their Euclidean counterparts in the limit R → ∞.

Note that if the potential Vc is normalized in accordance with Remark 6.1,
then there should be the additional constant summand γ/R in (6.38).

As in Euclidean case the energy levels of bound states depend only on the
sum of k + l that means the similar degeneracy of energy levels.

Contrary to Euclidean case there are here only finite number of bound
states; for

√
Rγ + (3 − n)/2 − l < 1 there are no bound states at all.

The values Ek,l increase with the grow of k, while the inequality in (6.38)
is valid. If

√
Rγ + (3 − n)/2 − l = k1 + ε, k1 ∈ N, ε > 0, then it holds

Ek1,l →
(n − 1)2

8R2
− γ

R
, as ε → +0

that exceeds the classical energy threshold (see (6.9)) of the finite motion by
the term

(n − 1)2

8R2
. (6.40)

This term in (6.38) has the following nature. The spectrum of the Laplace-
Beltrami operator on L2(Hn(R), dµ) (purely continues) is

(
−∞,− (n − 1)2R2

4

]

(see [119]) and therefore the summand (n − 1)2/(8R2) is simply the lower
bound of the spectrum for the operator − 1

2�. For n = 3 it was mentioned
already in [73]. Note that some authors prefer to exclude this term from (6.38)
by the subtracting it from the Hamiltonian HV .

The Oscillator Problem

Suppose n � 2, V = Vo =
1
2
ω2R2v2. Equation (6.32) takes now the form
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χ′′
l (v) +

(
n − 1

v
+

(n − 3)v
1 − v2

)
χ′

l(v) (6.41)

+
(

2ER2

(1 − v2)2
− l(l + n − 2)

v2(1 − v2)
− R4ω2v2

(1 − v2)2

)
χl(v) = 0 0 < v < 1 .

In the complex plane this equation is a Fuchsian one with singular points
±1, 0 and ∞. Characteristic exponents at these points are:

ρ
(1)
1 =ρ

(−1)
1 =

n − 1 +
√

(n − 1)2 − 8ER2 + 4R4ω2

4
, ρ

(∞)
1 =

1 +
√

1 + 4R4ω2

2
,

ρ
(1)
2 =ρ

(−1)
2 =

n − 1 −
√

(n − 1)2 − 8ER2 + 4R4ω2

4
, ρ

(∞)
2 =

1 −
√

1 + 4R4ω2

2
,

ρ
(0)
1 = l, ρ

(0)
2 = 2 − l − n .

The similar considerations as for the Coulomb problem above imply that
χlY

(n)
l,m ∈ Dom(HVo

) iff χl ∼ vρ
(0)
1 as v → 0; χl ∼ (v − 1)ρ

(1)
1 as v → 1; and

(n − 1)2 − 8ER2 + 4R4ω2 > 0 . (6.42)

One can reduce (6.41) to the Riemannian equation using the equalities
ρ
(1)
i = ρ

(−1)
i , i = 1, 2. The change of variables3

χl(v) = wl(z)z
1
2 ρ

(0)
1 (1 − z)ρ

(1)
1 , z = v2

glues the points ±1 together and leads directly to the hypergeometric equation
(B.5) for the function wl(z) with

α =
1
2

(
ρ
(∞)
1 + l

)
+ ρ

(1)
1

=
1
4

(
n + 2l +

√
1 + 4R4ω2 +

√
(n − 1)2 − 8ER2 + 4R4ω2

)
,

β =
1
2

(
ρ
(∞)
2 + l

)
+ ρ

(1)
1

=
1
4

(
n + 2l −

√
1 + 4R4ω2 +

√
(n − 1)2 − 8ER2 + 4R4ω2

)
,

γ = 1 +
1
2
(l − ρ

(0)
2 ) = l +

n

2
> 0 .

Here by z
1
2 ρ

(0)
1 (1− z)ρ

(1)
1 we mean the branch of a multifunction, holomorphic

on C∪∞ with the cut along [−∞, 0]∪ [1,+∞] and real on the interval (0, 1).
The function wl(z) on the interval (0, 1) should be ∼1 as z → +0 or

z → 1 − 0. Taking into account the inequality 1 − γ = 1 − l − n/2 < 0 and
formula (B.10), one gets

wl(z) = F (α, β; γ; z) and

lim
z→1−0

F (α, β; γ; z)(1 − z)α+β−γ =
Γ(γ)Γ(γ − α − β)

Γ(α)Γ(β)
= 0 .

3 This change corresponds to the first case of Theorem B.1.
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Since α > 0, the only possibility is β = −k, k = 0, 1, 2, . . . or equivalently
√

1 + 4R4ω2 −
√

(n − 1)2 − 8ER2 + 4R4ω2 = 2(2k + l) + n .

Multiplying the last equation by
√

1 + 4R4ω2 +
√

(n − 1)2 − 8ER2 + 4R4ω2,

one obtains

√
1 + 4R4ω2 +

√
(n − 1)2 − 8ER2 + 4R4ω2 =

8ER2 + 1 − (n − 1)2

2(2k + l) + n
.

This gives

2
√

1 + 4R4ω2 =
8ER2 + 1 − (n − 1)2

2(2k + l) + n
+ 2(2k + l) + n,

2
√

(n − 1)2 − 8ER2 + 4R4ω2 =
8ER2 + 1 − (n − 1)2

2(2k + l) + n
− 2(2k + l) − n > 0 .

Finally it holds

Ek,l = ω(2k + l +
n

2
)

√

1 +
1

4R4ω2
− 1

2R2

(
(2k + l)2 + (2k + l)n +

n

2

)
,

l � 2k + l < ωR2

√

1 +
1

4R4ω2
− n

2
.

(6.43)

The corresponding radial parts of eigenfunctions has the form:

χk,l(v) = vl
(
1 − v2

)ρ(1)
1

k∑

i=0

(α)i(−k)i

(l + n/2)i

vi

i!
,

where α, ρ
(1)
1 are defined by formulae above for E = Ek,l.

Remarks above, concerning formulae (6.38) and (6.39) are valid also in
this case. Note only that if

ωR2

√

1 +
1

4R4ω2
− n

2
= 2k1 + l + ε, ε > 0, k1 = 0, 1, 2. . . . ,

then

Ek1,l →
(n − 1)2

8R2
+

ω2R2

2
as ε → +0

that again exceeds the classical energy threshold of the finite motion by term
(6.40) (see (6.25)).
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6.3.2 The Spherical Case

Calculations here are similar to the hyperbolic case, but contain some sub-
tleties connected with a behavior of eigenfunctions in the complex plane. We
shall use here the model (1.20), which corresponds to the Laplace-Beltrami
operator on Sn in the form

� =
(1 + v2)2

R2

(
∂2

∂v2
+
(

n − 1
v

− (n − 3)v
1 + v2

)
∂

∂v

)
+

1 + v2

R2v2
�s, v ∈ R ,

(6.44)
where �s is the same as in (6.31). The limits v → ±0 correspond to the poles
of Sn and the limit v → ∞ corresponds to the equator defined by r = 1 in
model (1.19).

The Coulomb Problem

Theorem 2.11 implies here the self-adjointness of HVc
for n � 2, where V =

Vc = − γ

Rv
with Dom(HV ) given by (2.28). Here V1 = Vc if v < 0 and V = 0

otherwise. Below we clarify the calculations from [185] and generalize them
for the case n 
= 3.

Similarly to (6.33) one obtains a Fuchsian equation for the radial part
χl(v) of the eigenfunction χlY

(n)
l,m in the form:

χ′′
l (v) +

(
n − 1

v
− (n − 3)v

1 + v2

)
χ′

l(v)

+
(

2ER2

(1 + v2)2
− l(l + n − 2)

v2(1 + v2)
+

2Rγ

v(1 + v2)2

)
χl(v) = 0, v ∈ R .

(6.45)

Singular points for this equation in the complex plane are 0,±i (∞ is a
regular point as for (6.33)) with characteristic exponents:

ρ
(i)
1 =

1
4
(n − 1 + s), ρ

(i)
2 =

1
4
(n − 1 − s), ρ

(−i)
1 =

1
4
(n − 1 + s̄),

ρ
(−i)
2 =

1
4
(n − 1 − s̄), ρ

(0)
1 = l, ρ

(0)
2 = 2 − l − n,

where s and −s are roots of the equation s2 = (n − 1)2 + 8ER2 − 8iRγ.
The main difference from the eigenvalue problems, considered above for the
hyperbolic case, is that here only one singular point lies on the interval (namely
0 ∈ R ∪∞) under consideration. This situation arose in result of confluence
on the v-plane of two poles on the sphere Sn.

As in the hyperbolic case above the function χl(v) should be ∼ c+vρ
(0)
1 =

c+vl, c+ = const as v → +0, R � v > 0, otherwise it would be χlY
(n)
l,m 
∈

Dom(HVc
). At the same time it should be also χl ∼ c−vl, c− = const as

v → −0, R � v < 0, since the limit v = 2r/(1 − r2) = tan(ρ/R) → −0
corresponds to another pole r → +∞ (or equivalently ρ = πR) of the sphere
Sn.



6.3 Quantum Mechanical One-Body Problem 151

One can reduce (6.45) to hypergeometric equation (B.5) for a function
w(z) with parameters α, β, γ̃ by the substitution:

z :=
2v

v + i
, wl(z) := χl(v)

(
v + i

v

)l(
v + i
v − i

)ρ
(i)
2

, (6.46)

which moves the triple of singular points v = 0, i,−i into the triple z = 0, 1,∞.
By the expression

(
v + i
v − i

)ρ
(i)
2

(6.47)

we mean here the branch of the multifunction, that is holomorphic on (C ∪
∞)\[−i, i] and equals 1 at v = ∞. Since this branch is holomorphic at v = ∞,
the function wl(z) is holomorphic at z = 2.

Note that the real line R on the v-plane is mapped by substitution (6.46)
into the circle S

1 on the z-plane, defined by the equation |z − 1| = 1.
It is easily seen that

α = ρ
(−i)
2 + l + ρ

(i)
2 =

n − 1
2

+ l − 1
4
(s̄ + s) ∈ R,

β=ρ
(−i)
1 + l + ρ

(i)
2 =

n − 1
2

+ l +
1
4
(s̄ − s) 
∈ R, γ̃ =1 − ρ

(0)
2 + l = n + 2l − 1 .

Since χl ∼ c±vl as v → ±0, v ∈ R, the function wl(z) on S
1 is bounded near

the point z = 0 and 1 − γ̃ � 0, it holds (see (B.6))

wl(z) = w+,l(z) := c̃+F (α, β; γ̃; z), z ∈ S
1
+ :=

(
z ∈ S

1, Im z > 0
)
, c̃+ = const,

wl(z) = w−,l(z) := c̃−F (α, β; γ̃; z), z ∈ S
1
− :=

(
z ∈ S

1, Im z < 0
)
, c̃−=const .

Note that in [185] Stevenson made an assumption equivalent to c̃+ = c̃−
without any proof.

Functions w±,l(z) should be analytic continuations of each other through
the point z = 2.4 Due to formula (B.7) (applicable since γ̃ − α − β /∈ R) it
means that functions

c̃+
Γ(γ̃)Γ(γ̃ − α − β)
Γ(γ̃ − α)Γ(γ̃ − β)

F (α, β;α + β − γ̃ + 1; 1 − z), z ∈ S
1
+

and

c̃−
Γ(γ̃)Γ(γ̃ − α − β)
Γ(γ̃ − α)Γ(γ̃ − β)

F (α, β;α + β − γ̃ + 1; 1 − z), z ∈ S
1
−

are analytic continuations of each other through the point z = 2 as well as
functions

c̃+
Γ(γ̃)Γ(α + β − γ̃)

Γ(α)Γ(β)
(1− z)γ̃−α−βF (γ̃ −α, γ̃ − β; γ̃ −α− β + 1; 1− z), z ∈ S

1
+

and
4 Recall that the function F (α′, β′; γ′; z) is holomorphic in C\[1, +∞).



152 6 Particle in a Central Field on Two-Point Homogeneous Spaces

c̃−
Γ(γ̃)Γ(α + β − γ̃)

Γ(α)Γ(β)
(1−z)γ̃−α−βF (γ̃−α, γ̃−β; γ̃−α−β +1; 1−z), z ∈ S

1
− .

These requirements are equivalent to the system

(c̃+ − c̃−)
Γ(γ̃)Γ(γ̃ − α − β)
Γ(γ̃ − α)Γ(γ̃ − β)

= 0,

(c̃+ − c̃− exp (2πi(γ̃ − α − β)))
Γ(γ̃)Γ(α + β − γ̃)

Γ(α)Γ(β)
= 0 .

(6.48)

Since γ̃ − α − β /∈ R, linear system (6.48) has a nontrivial solution c̃+, c̃−
iff either

Γ(γ̃)Γ(γ̃ − α − β)
Γ(γ̃ − α)Γ(γ̃ − β)

= 0 or
Γ(γ̃)Γ(α + β − γ̃)

Γ(α)Γ(β)
= 0 .

Taking into account that γ̃ − β 
∈ R, β 
∈ R, one gets γ̃ − α = −k + 1 or
α = −k + 1, k ∈ N and thus

s + s̄ = ± (4(k + l) + 2n − 6) . (6.49)

Without loss of generality suppose that s+s̄ > 0 and therefore α = −k+1, k ∈
N, c̃+ = c̃−.5

The similar calculations as in the hyperbolic case yield the expression

s = 2(k + l) + n − 3 − 4iRγ

2(k + l) + n − 3

and finally the energy levels

Ek,l = − (n − 1)2

8R2
− 2γ2

(2(k + l) + n − 3)2
+

(2(k + l) + n − 3)2

8R2
, k ∈ N . (6.50)

Here there are infinite number of energy levels and Ek,l → +∞ as k → +∞
in a monotone way. As in the hyperbolic case in the limit R → ∞ formula
(6.50) describes energy levels of Coulomb problem in Euclidean space. In the
limit γ → 0 (6.50) becomes the formula for energy levels of the free motion
on the sphere.

The eigenfunctions, corresponding to (6.50), are:

χk,l(v) =
(

v

v + i

)l(
v − i
v + i

)ρ
(i)
2 k−1∑

p=0

(1 − k)p(β)p

p!(n + 2l − 1)p

(
2v

v + i

)p

,

where β and ρ
(i)
2 are given by

β =
n − 1

2
+ l +

2iRγ

2(k + l) + n − 3
, ρ

(i)
2 =

1 − k − l

2
+

iRγ

2(k + l) + n − 3
.

5 Both choices of a sign for s + s̄ in (6.49) lead to the same energy levels and
eigenfunctions, but expressions for eigenfunctions can have different forms.
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One can also express eigenfunctions through the more convenient coordinate
ρ (see (1.21)):

χk,l(ρ) = exp
(
2iρρ

(i)
2 /R

) k−1∑

p=0

2p(1 − k)p(β)p

p!(n + 2l − 1)pip

× sinl+p(ρ/R) exp (iρ(l + p)/R) , 0 � ρ � π .

Note that function (6.47) becomes − exp
(
2iρρ

(i)
2 /R

)
, which is continuous at

ρ = π/2 (v = ∞) and has different values at the points ρ = 0, πR (v = ±0)
as was stated above.

The Oscillator Problem

The oscillator potential Vo = 1
2R2ω2 tan2(ρ/R) for the sphere Sn, n � 2 does

not belong to the space L1
loc(S

n, dµ), since Vo → +∞ as ρ → πR. Therefore,
we shall use Theorem 2.12 for constructing the self-adjoint extension (HVo

)F

of the operator HVo
for which the set M ′ coincides with the hemisphere defined

by the inequality ρ < πR. The domain of this extension is given by formula
(2.32).

This definition of HVo
corresponds to the physical idea that infinite poten-

tial barrier implies the Dirichlet condition for a wave function on the boundary
Sn−1 of M ′, defined by the equation ρ = πR.

Now the equation for the radial part χl(v) of an eigenfunction χl(v)Y n
l,m

takes the form

χ′′
l (v) +

(
n − 1

v
− (n − 3)v

1 + v2

)
χ′

l(v)

+
(

2ER2

(1 + v2)2
− l(l + n − 2)

v2(1 + v2)
− R4ω2v2

(1 + v2)2

)
χl(v) = 0, 0 < v < +∞ .

(6.51)

In the complex plane this equation is a Fuchsian one with singular points
±i, 0 and ∞. Its characteristic exponents at these points are:

ρ
(i)
1 = ρ

(−i)
1 =

n − 1 +
√

(n − 1)2 + 8ER2 + 4R4ω2

4
,

ρ
(∞)
1 =

1 +
√

1 + 4R4ω2

2
,

ρ
(i)
2 = ρ

(−i)
2 =

n − 1 −
√

(n − 1)2 + 8ER2 + 4R4ω2

4
,

ρ
(∞)
2 =

1 −
√

1 + 4R4ω2

2
,

ρ
(0)
1 = l, ρ

(0)
2 = 2 − l − n .

The similar arguments as for the oscillator potential in the hyperbolic space
lead to the asymptotic χl ∼ vl as v → +0. On the other hand, the condition
χl(v)Y n

l,m ∈ Dom(q−�F + id) implies the convergence of the integral
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∫

M ′
g
(
grad

(
χlY

n
l,m

)
, grad

(
χlY

n
l,m

))
dµ

that leads to ∫ +∞

0

(
(1 + v2)χ′

l

)2
vn−1dv

(1 + v2)
n+1

2

< ∞.

The convergence of the latter integral as v → +∞ implies ρ(∞) > 1/2, if
χl ∼ v−ρ(∞)

as v → +∞. Thus, it should be χl ∼ v−ρ
(∞)
1 as v → +∞.

Conversely, it can be easily verified that for a solution of (6.51) with
asymptotics χl ∼ vl as v → +0 and χl ∼ v−ρ

(∞)
1 as v → +∞ it holds

χl(v)Y n
l,m ∈ Dom ((HVo

)F ).
The change of variables6

χl(v) = wl(z)(−z)l/2(1 − z)ρ
(i)
1 , z = −v2

leads to the hypergeometric equation (B.5) for the function wl(z) with

α =
1
2

(
ρ
(∞)
1 + l

)
+ ρ

(i)
1

=
1
4

(
n + 2l +

√
1 + 4R4ω2 +

√
(n − 1)2 + 8ER2 + 4R4ω2

)
,

β =
1
2

(
ρ
(∞)
2 + l

)
+ ρ

(i)
1

=
1
4

(
n + 2l −

√
1 + 4R4ω2 +

√
(n − 1)2 + 8ER2 + 4R4ω2

)
,

γ = 1 +
1
2
(l − ρ

(0)
2 ) = l +

n

2
> 0 .

Here the expression (−z)l/2(1−z)ρ
(1)
1 denotes the branch of the multifunction,

holomorphic on C ∪∞ with the cut along [0,+∞] and real on [−∞, 0].
The half-line v ∈ [0,+∞] is transformed into the half-line z ∈ [−∞, 0] and

asymptotics of wl(z) should be ∼ 1 as z → −0 and ∼ z−α as z → −∞. Since
α > β, one gets

wl(z) = F (α, β; γ; z) and lim
z→−∞

F (α, β; γ; z)(−z)β =
Γ(γ)Γ(α − β)
Γ(α)Γ(γ − β)

= 0,

due to (B.13). Therefore, it holds γ − β = −k, k = 0, 1, 2, . . . that implies
√

(n − 1)2 + 8ER2 + 4R4ω2 −
√

1 + 4R4ω2 = 2(2k + l) + n .

Calculations, similar to the hyperbolic case, give

Ek,l = ω
(
2k + l +

n

2

)√

1 +
1

4R4ω2
+

1
2R2

(
(2k + l)2 + (2k + l)n +

n

2

)
,

k = 0, 1, 2, . . .

(6.52)

6 This change again corresponds to the first case of Theorem B.1.
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In the limit R → ∞ formula (6.52) becomes the well-known formula for the
oscillator problem in Euclidean space. On the other hand, in the limit ω → 0
formula (6.52) describes energy levels of the free motion on the sphere.

The corresponding radial parts of eigenfunctions has the form:

χk,l(v) = vl
(
1 + v2

)ρ(i)
1

∞∑

i=0

(α)i(l + k + n/2)i

(l + n/2)i

vi

i!
,

where parameters α, ρ
(i)
1 are defined by formulae above for E = Ek,l.

6.4 The History of the Problem of One
and Two Particles in a Central Field
on Constant Curvature Spaces

In this section we consider in the chronological order the history of a study
of a one-body motion in central potentials in simply connected constant cur-
vature spaces and the two-body problem with central interaction in the same
spaces. Some papers, concerning the motion of a rigid body in these spaces,
are mentioned in Sect. 7.4.1.

Due to a great quantity of scientific papers in most cases one can only
declare that some paper has no priority in some (not widely known) question.
A converse declaration is only a conjecture. The reader of this section should
bear in mind this remark. At any case the history here is much more complete
than in papers mentioned below. The history before the beginning of 20th
century is difficult for study due to the absence of modern standards for
scientific papers at that time.

The analogue of Newton (or Coulomb) force for the space H3(R) was
proposed already by founders of the hyperbolic geometry Lobachevski (in
1835–38) ([110], p. 159) and Bolyai (between 1848 and 1851) ([26], p. 156) as
the value F (ρ) that is inverse to the area of the sphere in H3(R) of radius ρ
with an attractive body in the center.

According to the footnote in [108] (1872, p. 117) Dirichlet had considered
this force “schon früher”.7 The similar information is in the Schering paper
[155] (1873, p. 149): “Mit diesem Gegenstande hat auch Dirichlet, wie ich jetzt
erfahren, in der letzten Zeit seines Aufenthalts in Berlin sich beschäftigt; er
hat darüber mit seinen Freunden gesprochen ohne von den Resultaten seiner
Untersuchungen Mittheilung zu machen”.

The analytical expression for the Newtonian potential in the space H3(R)
was written in 1870 by Schering [154] (see also his paper [155] of 1873), without
any motivation and references to Lobachevski and Bolyai.

In 1873 Lipschitz considered a one-body motion in a central potential on
the sphere S2 [109]. Although he knew that the central potential Vc satisfies
the Laplace equation on S3, due to some reason he preferred to consider
7 P.G. Dirichlet died in 1859.
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another central potential V (ρ) ∼ sin−1(ρ/R) (in notations of Sect. 6.2.1). He
found the general solution of this problem through elliptic functions.

In 1885 Killing found the generalization of all three Kepler laws for the
sphere S3 [87]. He considered the attractive force as an inverse area of a 2-
dimensional sphere in S3 as Lobachevski and Bolyai did before. In the next
year these results were published also by Neumann in [129]. The expansion of
these results onto the hyperbolic case was carried out in the Liebmann paper
[103] in 1902 and later in 1905 in his book on noneuclidean geometry [105].
Note that he started from ellipses in S3 or H3(R) and derived a potential
in such a way that the first Kepler law would be valid. He derived also the
generalization of the oscillator potential for these spaces from the requirement
that a particle motion occurs along an ellipse, with its center coinciding with
the center of the potential.

Also, in the same paper [87] Killing proved the variable separation in the
two-centre Kepler problem on the sphere Sn, which implies the integrability
of this problem.

The generalization of the Bertrand theorem for spaces S2 and H2(R) was
proved by Liebmann in 1903 [104]. In the same year Stäckel wrote without
any references ([182], p. 476): “. . . von Interesse ist auch, daß der bekannte
Satz von Bertrand sein Analogon im absoluten Raume hat. Freilich sind das
alles, um einen Ausdruck von Felix Klein zu gebrauchen, “selbst geschaffene
Schmerzen”, denn weder die Beobachtung an Planeten noch, was mehr sagen
will, an Fixsternen nötigen uns, die altbewährte Euklidische Geometrie durch
eine “Astralgeometrie” zu ersetzen”. Similar words are also in the first edi-
tion (1905) of the Liebmann book [105] (p. 240): “Erwähnt sei noch, daß
das modifizierte Newtonsche und das elastische Anziehungsgesetz die einzigen
Zentralkräfte sind, die im sphärischen Raum immer, im hyperbolischen, sobald
die Konstante des Flächensaztes in gewissen Grenzen bleibt, auf geschlossene
Bahnkurven führen. Die Methode, mit deren Hilfe Bertrand den entsprechen-
den Satz der euklidischen Geometrie bewiesen hat, ist auf die nichteuklidische
Geometrie leicht übertragbar”, but there is no a corresponding proof. This
proof appeared in the second edition (1912) of the Liebmann book for the
hyperbolic space and in the third edition (1923) the paragraph concerning
the spherical case was added.

In [127] a one-particle motion under the action of a central force in spaces
of constant curvature was considered from a point of view, different from
the common concept of natural mechanical systems on Riemannian spaces,
accepted particularly in the present book (see Sect. 4.3.3). As a consequence
there are no explicit formulas for a particle trajectory even for the potential
Vc. Also, there are no nontrivial potentials for which all bounded trajectories
are closed.

One can consider the classical mechanics in constant curvature spaces as
a predecessor of special and general relativity. After the rise of these theories
the above-mentioned papers of Schering, Killing and Liebmann were almost
completely forgotten. Note that the description of a particle motion in cen-
tral potentials in spaces S3 and H3(R) was shorten in the second and the
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third editions of the Liebmann book w.r.t. the first edition in favor of special
relativity.

Similar models attracted attention later from the point of view of quantum
mechanics and the theory of integrable dynamical systems.

Quantum mechanical spectral problem on the sphere S3 for potential Vc

(Coulomb problem) was solved by Schrödinger in 1940 by the factorization
(ladder) method, invented by himself [156]. Stevenson in 1941 solved the same
problem using more traditional analysis of the hypergeometric differential
equation [185] (see also the Infeld result in 1941 [72]). Infeld and Schild in
1945 solved a similar problem in the space H3(R) [73] (see also [74]). Note that
Schrödinger, Stevenson, Infeld and Schild did not cite the works of Schering,
Killing, Liebmann and probably did not know them.

Nishino in 1972 [130] (see also [70]) found all central potential in constant
curvature spaces corresponding to classical one-body problems admitting an
additional integral, quadric in momenta (analogs of the Runge-Lenz vector),
which is independent from integrals linear in momenta. These potentials again
appeared to be Vc and Vo. He pointed out that the corresponding one-particle
systems are analogs for the isotropic harmonic oscillator and the Kepler prob-
lem in Euclidean case and calculated the Poisson brackets for integrals of
motion. However, Nishino did not notice the connection of the considered
problem with the Bertrand one in Euclidean space and did not cite any of his
predecessors mentioned above.

Further the period of partial rediscovery started. The generalized Bertrand
problem in the space Sn was resolved in 1979 by Higgs8 [69]. In the same pa-
per there were found one-particle energy levels for the potential Vo on S2

and additional integrals both in classical and quantum cases. The latter inte-
grals are generalization of the Runge-Lenz vector from Euclidean case. In the
same year they were independently obtained by Kurochkin and Otchik for the
sphere S3 [98]. In 1980 Bogush, Kurochkin and Otchik found them also for
the hyperbolic space H3(R) [21]. The same problem for the spaces Sn, n � 3
and potentials Vc, Vo was solved by Leemon in 1980 [101]. Coordinate systems
admitting variable separation for the quantum Kepler problem in the spaces
S3,H3(R) were found by Bogush, Otchik and Red’kov in 1983 [20] (see also
[139]). Among their predecessors these authors cited only Schrödinger, Infeld
and Schild.

The generalized Bertrand problem in the space S3 was solved once again
in 1980 by Slawianowski [177]. In the same year Slawianowski and Slominski
carried out the quasiclassical quantization of the one-particle motion in S3

for potentials Vc and Vo, without using the Maslov index [179]. These authors
did not cite papers of their predecessors.

In 1982 Ikeda and Katayama solved once again the generalized Bertrand
problem in the spaces Sn and Hn(R) in a uniform way [71], cited only [130].
In the paper [84] the application of these potentials to some cosmological
models was studied. In [81] (1990) Katayama showed the solvability of the
one-particle spectral problem for the potential Vc on the space H3(R) by the
ladder method. This paper was the first one on this subject, where such a big
8 See the remark above on the Stäckel paper [182] and the Liebmann book [105].
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number of previous papers were cited: [21, 69, 72, 98, 101, 130, 156, 185]. In
the paper [82] (1992) Katayama carried out the similar study for the oscillator
potential Vo on constant curvature spaces.

The connection of the Runge-Lenz operator for the quantum Kepler prob-
lem in S3 with the Schrödinger ladder method was discussed by Barut and
Wilson in 1985 [14]. In 1987 and 1990 Barut, Inomata and Junker solved the
Kepler problem in S3 and H3(R) using the functional integration [12].

In 1991 Dombrowski and Zitterbarth published the survey [42], where de-
scribed almost forgotten results of Schering, Killing and Liebmann. On the
other hand, it seems that Dombrowski and Zitterbarth were not aware of
Schrödinger, Infeld, Nishino, Higgs, Leemon and later papers. In particular,
Zitterbarth in his Ph.D. thesis rediscovered the Runge-Lenz vector for poten-
tial Vc in constant curvature spaces.

In papers [137, 138] (1991 and 1994) Otchik considered the one-particle
quantum two-center Coulomb problem in S3 and found a coordinate sys-
tem admitting the variable separation. The corresponding ordinary differen-
tial equations are reduced to the Heun equation. He did not cite the Killing
paper [87], containing similar results for the classical case.

In 1992 Granovskii, Zhedanov and Lutsenko developed the algebraic ap-
proach of [21, 69, 98, 101] to one-particle problems for potentials Vc and Vo

in the spaces Sn,Hn(R) [54].
Potentials Vc and Vo as solutions of the generalized Bertrand problem

in Sn were rediscovered one more time in 1992 by Kozlov and Harin [95].
The two-body classical mechanical problem with the potential Vc seems to be
mentioned here for the first time. There was declared a conjecture that not all
orbits of this problem are closed. Also, Kozlov and Harin rediscovered there
the Killing result [87] on the integrability of the classical two-center Kepler
problem on the sphere S2. Note that this integrability is also a direct conse-
quence of the Otchik result (1991) cited above on the separation of variables
for the corresponding quantum problem. In 1994 Kozlov rediscovered also the
Kepler laws in spaces of constant curvature [93]. Among his predecessors only
Slawianowski and Slominski were pointed out. In the paper [94] of the same
year Kozlov and Fedorov proved the integrability of the classical one-particle
motion on the sphere Sn in a superposition of 2(n + 1) potentials Vo with
their centers at points

(±1, 0, . . . , 0), (0,±1, 0, . . . , 0), . . . , (0, . . . , 0,±1)

for the standard Sn model in the space R
n+1 defined by the equation

n∑

i=0

x2
i = 1 .

In 1992 Chernikov considered the potential Vc in the space H3(R) as a
spherically symmetric harmonic function and the corresponding one-body mo-
tion, i.e., partially rediscovered again the results of Killing and Liebmann.

A variable separation for a one-particle Schrödinger operator and some
noncentral potentials in the spaces S2 and H2(R) was studied by Kalnins,
Miller, Hakobyan and Pogosyan in 1996–1998 [78, 79, 80].
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In 1996 the first paper of the author concerning mechanics on constant
curvature spaces was published [159]. At that moment he knew only papers
[93, 95, 177, 179] on this subject. The new results in [159] w.r.t. preceding
papers were the semiclassical quantization of a one-body motion in poten-
tials Vc and Vo for the space H3(R) using the Maslov index and the proof
of the self-adjointness of the corresponding Schrödinger operator. Note that
the problem of self-adjointness of these operator was not considered before,
therefore calculations of energy levels were not completely satisfactory from
the mathematical point of view.

The two-body problem with a central interaction on constant curvature
spaces was considered for the first time by the author in 1998 [160]. Its Hamil-
tonian reduction to the system with two degrees of freedom was carried out
by explicit coordinate calculations. For some potentials there was proved the
solvability of the reduced problem for an infinite period of time. The author’s
paper [166], dealing with the same questions for the spaces S2 and H2(R),
was submitted for publication in 1997, but printed only in 2000. In 1999 the
author considered the quantum mechanical two-body problem in the spaces
S2 and H2(R), studied the self-adjointness of the corresponding Schrödinger
operator and found in explicit form some its infinite energy level series for S2,
corresponding to some central potentials [162].

In 1999 Kilin considered some partial solutions of the two-body problem
with the potential Vc in the spaces S2 and H2(R), corresponding to the motion
of both bodies along circles with a common center in such a way that bodies
are diametrically opposite w.r.t. this center. By explicit calculations he proved
the stability of these solutions in linear approximation that does not guarantee
the real stability. Besides, there were found points of the relative equilibrium
of a “light” third body in the potential of two “heavy” ones, rotating in the
way, described above. In the same year Chernoivan and Mamaev considered
the restricted classical two-body problem in the spaces S2 and H2(R) for the
potential Vc, i.e., the problem of a “light” body motion about a “heavy” one,
which moves along a geodesic with a constant velocity. Numerical calculations
of the Poincaré surfaces of section for this problem demonstrated its noninte-
grability. Among the preceding papers on this subject the authors of [38, 86]
mentioned only [93] and [95]. These results were included in the book [27].

In 2000–2002 Vozmischeva and Oshemkov continued studying integrable
two-center Kepler problem on the sphere S2 [203, 205], not knowing Killing
([87]) and Otchik ([137, 138]) results.

Results of Schrödinger [156], Infeld [72], Slawianowski and Slominski
[177, 179], Kozlov, Harin [93, 95], Shchepetilov [160] was considered in the
Slawianowski review [178] in 2000. Some basic results of Killing and Lieb-
mann for classical mechanics on the spaces S3 and H3(R) are contained in
[198].

In 2000 the author derived an explicitly invariant expression for the two-
body quantum mechanical Hamiltonian with central interaction in the spaces
Sn and Hn(R) via a radial differential operator and some invariant oper-
ators on the spaces Sn

S and Hn(R)S [163]. In the same paper the invari-
ant Hamiltonian reduction of the two-body classical problem in the spaces
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Sn, Hn(R), n = 2, 3 was carried out. In [184] the author and Stepanova stud-
ied the self-adjointness of the corresponding Schrödinger operators and found
some energy level series in an explicit form for S3, corresponding to some cen-
tral potentials. In 2003 these results were partially generalized by the author
for two-point homogeneous spaces [168, 169]. These results after correction of
some errors are included in the present monograph.

In 2001 and 2003 Ziglin proved in [213, 214] the meromorphic nonintegra-
bility of the restricted two-body problem on the sphere S2 with the potentials
Vc and Vo in the class of meromorphic functions. Similar results with smaller
restrictions, valid also for the restricted two-body problem on the hyperbolic
plane H2(R), were obtained a little later by Maciejewski and Przybylska in
[112]. In 2006 ([171]) the author proved the meromorphic nonintegrability of
the nonrestricted reduced two-body problem on the spaces S2 and H2(R) with
potentials Vc and Vo.

In 2003 Bogush, Kurochkin and Otchik considered in [22] the Coulomb
scattering in the space H3(R).



7

Classical Two-Body Problem on Two-Point
Homogeneous Riemannian Spaces

In this chapter we consider the classical two-body problem on two-point ho-
mogeneous Riemannian spaces. First we derive an expression of its Hamil-
tonian function through the canonical variables r, pr, corresponding to the
radial degree of freedom, and generators of the Poisson algebra PI (QS) ∼=
gr DiffI (QS). Here we use the dequantization procedure from Sect. 4.3.3 since
it allows one to avoid quite cumbersome calculations similar to those in
Chap. 5. Also, one gets integrals of motion from central elements of the algebra
DiffI (QS), constructed in Chap. 3.

Then in Sect. 7.3 we derive the conditions for the existence of global so-
lutions for the two-body problem and discuss the problem of its integrability.
Section 7.4 contains the consideration of the existing center of mass concepts
on constant curvature spaces and their connections with constructed expres-
sions of two-body Hamiltonian functions. In Sect. 7.5 we study the Hamil-
tonian reduction of the two-body problem, restricting ourselves with constant
curvature spaces and classify reduced Hamiltonian systems.

7.1 Explicitly Invariant Form of the Hamiltonian
Two-Body Function for Compact Two-Point
Homogeneous Spaces

Consider the classical mechanical two-body problem on an arbitrary two-
point homogeneous space Q. The configuration space for this problem is
(Q × Q)\diag, since a collision of pointlike particles leads to an uncertainty
of their motion.1 Here we will use notations from Sect. 5.1.

The submanifold Qop ⊂ Q×Q was defined there as the set of pairs (x,y) ∈
Q×Q such that ρ(x,y) = diam Q. In Sect. 5.1 the space (Q×Q)\(diag∪Qop)
was represented as the direct product I×(G/K0), where I = (0,diam Q) ⊂ R.
Similarly, for noncompact two-point homogeneous space Q one has
(Q × Q)\diag = I × (G/K0), where I = (0,+∞). This means that the phase

1 The excluding of the diagonal from Q × Q does not solve the collision problem,
since for some initial conditions global solutions can be absent.

A.V. Shchepetilov: Calculus and Mechanics on Two-Point Homogeneous Riemannian Spaces,
Lect. Notes Phys. 707, 161–190 (2006)
DOI 10.1007/3-540-35386-0 7 c© Springer-Verlag Berlin Heidelberg 2006
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space of the classical two-body problem can be represented as

T ∗I × T ∗(G/K0) ∼= T ∗I × T ∗QS (7.1)

in the noncompact case and as

(T ∗I × T ∗QS) ∪ T̃ ∗Qop =: Mess ∪ T̃ ∗Qop (7.2)

in the compact case, where T̃ ∗Qop is the restriction of the cotangent bundle
T ∗(Q × Q) onto Qop.

Since dim Qop = dimQ + dim Ax, it can be easily verified that
dim T ∗((Q × Q)\diag) − dim T̃ ∗Qop > 1, if dim Q − dim Ax > 1. The last
inequality is valid for Q 
= Pn(R) (see Sect. 1.2); in this case the subspace
T̃ ∗Qop does not separate T ∗((Q×Q)\diag) and most trajectories of the two-
body problem do not intersect the subspace T̃ ∗Qop. Therefore, many prop-
erties of the two-body problem on a compact two-point homogeneous space
Q (for instance, the integrability and the collision problem) can be studied
after the restriction of this system onto the space T ∗I × T ∗QS , at least for
Q 
= Pn(R).

First of all, using the dequantization procedure described in Sect. 4.3.3 and
expressions for the two-body quantum mechanical Hamiltonians on two-point
homogeneous spaces, one can derive corresponding expressions for two-body
Hamiltonian functions on the space T ∗I ×T ∗(G/K0). Let pr be a momentum
on T ∗I, corresponding to the coordinate r on I.

7.1.1 Quaternionic Case

From expression (5.22) one gets for Q = Pn(H) the two-body Hamiltonian
function in the form:

h =
(1 + r2)2

8mR2
p2

r +
(m1α − m2β)(1 + r2)

2m1m2R2
prp0 +

m1α
2 + m2β

2

2m1m2R2
p2
0

+
1
2

(Dsp1 + Fsp2 + 2Esp3 + Csp4 + Asp5 + 2Bsp6) + V (r),
(7.3)

where pi are generators of the Poisson algebra PI (Pn(H)S) ∼=
gr DiffI (Pn(H)S), corresponding to generators Di, i = 0, . . . , 10 of the algebra
DiffI (Pn(H)S), and functions As, Bs, Cs,Ds, Fs, Es were defined in Sect. 5.2.

Due to the definition of the Poisson structure for a graded algebra grU(g)
in Sect. 4.2.1 and commutative relations (3.15) one gets 55 commutative re-
lations for generators of the Poisson algebra PI (Pn(H)S) (see Remark 4.3):

[p0, p1]P = −p3, [p0, p2]P = p3, [p0, p3]P =
1
2
(p1 − p2),

[p0, p4]P = −2p6, [p0, p5]P = 2p6, [p0, p6]P = p4 − p5,

[p0, p7]P = −p8, [p0, p8]P = p7, [p0, p9]P = 0, [p0, p10]P = 0,

[p1, p2]P = −2p0p3 − 2p7, [p1, p3]P = −p0p1 + p8, [p1, p4]P = 2p7,

[p1, p5]P = 0, [p1, p6]P = p8, [p1, p7]P = −p3p6 − p1p4 + p9 + p10,
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[p1, p8]P = −p3p5 − p1p6, [p1, p9]P = −2p3p8 − 2p1p7,

[p1, p10]P = p6p8 − p5p7, [p2, p3]P = p0p2 + p8,

[p2, p4]P = −2p7, [p2, p5]P = 0, [p2, p6]P = −p8,

[p2, p7]P = −p3p6 + p2p4 − p9 − p10, [p2, p8]P = −p3p5 + p2p6,

[p2, p9]P = −2p3p8 + 2p2p7, [p2, p10]P = −p6p8 + p5p7,

[p3, p4]P = 0, [p3, p5]P = 2p8, [p3, p6]P = p7, [p3, p7]P = −1
2
(p1 + p2)p6,

(7.4)

[p3, p8]P = −1
2
(p1 + p2)p5 + p9 + p10, [p3, p9]P = −(p1 + p2)p8,

[p3, p10]P = p6p7 − p4p8, [p4, p5]P = −4p0p6, [p4, p6]P = −2p0p4,

[p4, p7]P = (p1 − p2)p4, [p4, p8]P = (p1 − p2)p6 − 2p0p7,

[p4, p9]P = 2(p1 − p2)p7, [p4, p10]P = 0, [p5, p6]P = 2p0p5,

[p5, p7]P = 2p3p6 + 2p0p8, [p5, p8]P = 2p3p5, [p5, p9]P = 4p3p8, [p5, p10]P = 0,

[p6, p7]P =
1
2
(p1 − p2)p6 + p3p4 + p0p7,

[p6, p8]P =
1
2
(p1 − p2)p5 + p3p6 − p0p8,

[p6, p9]P = (p1 − p2)p8 + 2p3p7, [p6, p10]P = 0,

[p7, p8]P =
1
2
(p1 − p2)p8 − p3p7 − p0(p9 + p10),

[p7, p9]P = (p1 − p2)(p9 + p10), [p7, p10]P =
1
2
(p2 − p1)p2

6

− p0p6p7 + p0p4p8 +
1
2
(p1 − p2)p4p5, [p8, p9]P = 2p3(p9 + p10),

[p8, p10]P = −p3p
2
6 + p0p6p8 − p0p5p7 + p3p4p5,

[p9, p10]P = (p5p7 − p6p8)(p1 − p2) + 2p3p4p8 − 2p3p6p7 .

The relation (3.13) is transformed into

p2
10 − p4p5p9 − 2p6p7p8 + p9p

2
6 + p4p

2
8 + p5p

2
7 = 0 .

Likewise, the additional relation (3.14) in the case n = 2 now becomes

p1p2 − p2
3 − p9 = 0 , (7.5)

and can be used in this case for excluding p9 from the list of generators.
It is easily seen that all Poisson algebras PI (Pn(H)S) for n � 3 are isomor-

phic to each other since the dependence on n was eliminated in commutative
relations by dequantization procedure:

DiffI (Pn(H)S) → PI (Pn(H)S) .

The same is also valid for Hamiltonian functions.
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Elements Cgr
i from ZPI (Pn(H)S) , i = 1, 2, 3, corresponding to elements

Ci, i = 1, 2, 3 from Sect. 3.2.2, can be obtained by the rejection of terms with
degrees lower than deg Ci in the expression for Ci. This implies the following
expressions

Cgr
1 = p2

0 + p1 + p2 + p4 + p5, Cgr
2 = p1p2 − p2

3 − p9, Cgr
3 =

1

2
(p1 + p2)(p4 + p5)

+
1

4
(p1 − p2)

2 + p2
3 +

1

4
(p4 − p5)

2 + p2
6 + p9 − 2p10

+
1

2
p2
0(p1 + p2 + p4 + p5) +

1

4
p4
0 .

Note that due to (7.5) it holds Cgr
2 = 0 for n = 2.

7.1.2 Octonionic Case

The expression for the two-body Hamiltonian function for Q = P2(Ca)S is
again (7.3), where pi, i = 0, . . . , 9 are now generators of the Poisson algebra

PI

(
P2(Ca)S

) ∼= gr DiffI

(
P2(Ca)S

)
,

corresponding to generators Di, i = 0, . . . , 9 of the algebra DiffI

(
P2(Ca)S

)
.

Commutative relations for them have the form

[p0, p1]P = −p3, [p0, p2]P = p3, [p0, p3]P =
1
2
(p1 − p2), [p0, p4]P = −2p6,

[p0, p5]P = 2p6, [p0, p6]P = p4 − p5, [p0, p7]P = −p8, [p0, p8]P = p7,

[p0, p9]P = 0, [p1, p2]P = −2p0p3 − 2p7, [p1, p3]P = −p0p1 + p8,

[p1, p4]P = 2p7, [p1, p5]P = 0, [p1, p6]P = p8, [p1, p7]P = p1(p2 − p4) − p9

− p3p6 − p2
3, [p1, p8]P = −p3p5 − p1p6, [p1, p9]P = p5p7 − p6p8,

[p2, p3]P = p0p2 + p8, [p2, p4]P = −2p7, [p2, p5]P = 0, [p2, p6]P = −p8,

[p2, p7]P = (p4 − p1)p2 + p9 − p3p6 + p2
3, [p2, p8]P = p2p6 − p3p5,

[p2, p9]P = p6p8 − p5p7, [p3, p4]P = 0, [p3, p5]P = 2p8,

[p3, p6]P = p7, [p3, p7]P = −1
2
(p1 + p2)p6,

[p3, p8]P = p1p2 −
1
2
(p1 + p2)p5 − p9 − p2

3, [p3, p9]P = p4p8 − p6p7, (7.6)

[p4, p5]P = −4p0p6, [p4, p6]P = −2p0p4,

[p4, p7]P = (p1 − p2)p4, [p4, p8]P = (p1 − p2)p6 − 2p0p7,

[p4, p9]P = 0, [p5, p6]P = 2p0p5, [p5, p7]P = 2p3p6 + 2p0p8,

[p5, p8]P = 2p3p5, [p5, p9]P = 0, [p6, p7]P =
1
2
(p1 − p2)p6 + p3p4 + p0p7,

[p6, p8]P =
1
2
(p1 − p2)p5 + p3p6 − p0p8, [p6, p9]P = 0,

[p7, p8]P =
1
2
(p1 − p2)p8 − p3p7 + p0p9 + p0p

2
3 − p0p1p2,
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[p7, p9]P =
1
2
(p2 − p1)p4p5 + p0p6p7 − p0p4p8 +

1
2
(p1 − p2)p2

6 ,

[p8, p9]P = p3p
2
6 − p0p6p8 − p3p4p5 + p0p5p7 .

Elements Cgr
i , i = 1, 2 from ZPI

(
P2(Ca)S

)
, corresponding to elements

C1, C2 from Sect. 3.5.2, are

Cgr
1 = p2

0 + p1 + p2 + p4 + p5, Cgr
2 = p4p5 − p2

6 − 2p9 .

7.1.3 Complex Case

From expression (5.23) one gets for Q = Pn(C) the two-body Hamiltonian
function

h =
(1 + r2)2

8mR2
p2

r +
(m1α − m2β)(1 + r2)

2m1m2R2
prp0 +

m1α
2 + m2β

2

2m1m2R2
p2
0

+
1
2
(
Dsp1 + Fsp2 + 2Esp3 + Csp

2
4 + Asp

2
5 + 2Bsp4p5

)
+ V (r),

(7.7)

where pi, i = 0, . . . , 5 are generators of the Poisson algebra PI(Pn(C)S) ∼=
gr DiffI(Pn(C)S), corresponding to generators Di, i = 0, . . . , 5 of the algebra
DiffI (Pn(C)S). Denote the last generators of PI (Pn(C)S), corresponding to
the generator � of DiffI (Pn(C)S), by p�.

The commutative relations for these generators of PI (Pn(C)S) are as fol-
lows

[p0, p1]P = −p3, [p0, p2]P = p3, [p0, p3]P =
1
2
(p1 − p2),

[p0, p4]P = −p5, [p0, p5]P = p4, [p0, p�]P = 0, [p1, p2]P = −2p0p3 − 2p�p4,

[p1, p3]P = −p0p1 + p�p5, [p1, p4]P = p�, [p1, p5]P = 0,

[p1, p�]P = −p1p4 − p3p5, [p2, p3]P = p0p2 + p�p5, [p2, p4]P = −p�,

[p2, p5]P = 0, [p2, p�]P = p2p4 − p3p5, [p3, p4]P = 0, [p3, p5]P = p�, (7.8)

[p3, p�]P = −1
2
(p1 + p2)p5, [p4, p5]P = −p0,

[p4, p�]P =
1
2
(p1 − p2), [p5, p�]P = p3 .

The additional relation (3.28) in the case n = 2 now becomes

p1p2 − p2
3 − p2

� = 0 . (7.9)

Elements Cgr
i ∈ ZPI (Pn(C)S) , i = 1, 2, 3, corresponding to elements

Ci, i = 1, 2, 3 from Sect. 3.3.2, are

Cgr
1 = p2

0 + p1 + p2 + p2
4 + p2

5, Cgr
2 = (p1 − p2)p5 − 2p3p4 + 2p0p�,

Cgr
3 = p1p2 − p2

3 − p2
� .

Note that due to (7.9) it holds Cgr
3 = 0 for n = 2.
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7.1.4 Real Case

From expression (5.24) one gets for Q = Pn(R), Sn, n � 3 the two-body
Hamiltonian function:

h =
(1 + r2)2

8mR2
p2

r +
(m1α − m2β)(1 + r2)

2m1m2R2
prp0 +

m1α
2 + m2β

2

2m1m2R2
p2
0

+
1
2

(Csp1 + Asp2 + 2Bsp3) + V (r) .

(7.10)

The Poisson algebra PI (Pn(R)S) ∼= PI (Sn
S) is generated by elements pi, i =

0, . . . , 3 if n � 4 and by elements p�, pi, i = 0, . . . , 3 if n = 3. The commutative
relations for these generators are

[p0, p1]P = −2p3, [p0, p2]P = 2p3, [p0, p3]P = p1 − p2,

[p1, p2]P = −4p0p3, [p1, p3]P = −2p0p1, [p2, p3]P = 2p0p2 .
(7.11)

The generator p�, if exists, commutes with all other generators. The additional
relation (3.36) in the case n = 3 now looks like

p1p2 − p2
3 − p2

� = 0 . (7.12)

Elements Cgr
i ∈ ZPI (Pn(R)S) , i = 1, 2, corresponding to elements

Ci, i = 1, 2 from Sect. 3.4.2, are

Cgr
1 = p2

0 + p1 + p2, Cgr
2 = p1p2 − p2

3 .

Note that due to (7.12) it holds Cgr
2 = p2

� for n = 3.
The expression (5.25) implies for Q = P2(R), S2 that

h =
(1 + r2)2

8mR2
p2

r +
(m1α − m2β)(1 + r2)

2m1m2R2
prp0 +

m1α
2 + m2β

2

2m1m2R2
p2
0

+
1
2
(
Csp

2
1 + Asp

2
2 + 2Bsp1p2

)
+ V (r),

(7.13)

where
[p0, p1]P = −p2, [p0, p2]P = p1, [p1, p2]P = −p0 . (7.14)

The Poisson algebra PI

(
P2(R)S

) ∼= PI

(
S2

S

)
is isomorphic to the algebra

gr U(so(3)). In this simplest case there is only one central independent element
from gr U(so(3)): Cgr

1 = p2
0 + p2

1 + p2
2.

7.2 Explicitly Invariant Form of the Hamiltonian
Two-Body Function for Noncompact Two-Point
Homogeneous Spaces

Here we shall derive expressions of the Hamiltonian function for the two-body
system on a noncompact two-point homogeneous spaces Q through generators
of the corresponding Poisson algebra PI(QS). Also, there will be obtained
relations for these generators. Considerations here are completely similar to
considerations in the previous section.
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7.2.1 Quaternionic Case

From expression (5.26) one gets for Q = Pn(H) the two-body Hamiltonian
function in the form:

h =
(1 − r2)2

8mR2
p2

r +
(m1α − m2β)(1 − r2)

2m1m2R2
prp̄0 +

m1α
2 + m2β

2

2m1m2R2
p̄2
0

+
1
2

(Dhp̄1 + Fhp̄2 + 2Ehp̄3 + Chp̄4 + Ahp̄5 + 2Bhp̄6) + V (r) ,

(7.15)

where p̄i are generators of the Poisson algebra PI (Hn(H)S) ∼=
gr DiffI (Hn(H)S), corresponding to generators D̄i, i = 0, . . . , 10 of the al-
gebra DiffI (Pn(H)S), and functions Ah, Bh, Ch,Dh, Fh, Eh were defined in
Sect. 5.3.

From commutative relations (3.17) one gets 55 commutative relations for
generators of the Poisson algebra PI (Hn(H)S) (see Remark 4.3):

[p̄0, p̄1]P = p̄3, [p̄0, p̄2]P = p̄3, [p̄0, p̄3]P =
1
2
(p̄1 + p̄2), [p̄0, p̄4]P = 2p̄6,

[p̄0, p̄5]P = 2p̄6, [p̄0, p̄6]P = p̄4 + p̄5, [p̄0, p̄7]P = p̄8, [p̄0, p̄8]P = p̄7,

[p̄0, p̄9]P = 0, [p̄0, p̄10]P = 0, [p̄1, p̄2]P = −2p̄0p̄3 − 2p̄7,

[p̄1, p̄3]P = −p̄0p̄1 − p̄8, [p̄1, p̄4]P = −2p̄7, [p̄1, p̄5]P = 0,

[p̄1, p̄6]P = −p̄8, [p̄1, p̄7]P = p̄3p̄6 − p̄1p̄4 − p̄9 − p̄10, [p̄1, p̄8]P = p̄3p̄5 − p̄1p̄6,

[p̄1, p̄9]P = 2p̄3p̄8 − 2p̄1p̄7, [p̄1, p̄10]P = p̄5p̄7 − p̄6p̄8, [p̄2, p̄3]P = p̄0p̄2 + p̄8,

[p̄2, p̄4]P = −2p̄7, [p̄2, p̄5]P = 0, [p̄2, p̄6]P = −p̄8,

[p̄2, p̄7]P = p̄2p̄4 − p̄3p̄6 − p̄9 − p̄10, [p̄2, p̄8]P = p̄2p̄6 − p̄3p̄5,

[p̄2, p̄9]P = 2p̄2p̄7 − 2p̄3p̄8, [p̄2, p̄10]P = p̄5p̄7 − p̄6p̄8,

[p̄3, p̄4]P = 0, [p̄3, p̄5]P = 2p̄8, [p̄3, p̄6]P = p̄7, [p̄3, p̄7]P =
1
2
(p̄2 − p̄1)p̄6,

(7.16)

[p̄3, p̄8]P =
1
2
(p̄2 − p̄1)p̄5 + p̄9 + p̄10, [p̄3, p̄9]P = (p̄2 − p̄1)p̄8,

[p̄3, p̄10]P = p̄6p̄7 − p̄4p̄8, [p̄4, p̄5]P = −4p̄0p̄6, [p̄4, p̄6]P = −2p̄0p̄4,

[p̄4, p̄7]P = (p̄1 + p̄2)p̄4, [p̄4, p̄8]P = (p̄1 + p̄2)p̄6 − 2p̄0p̄7,

[p̄4, p̄9]P = 2(p̄1 + p̄2)p̄7, [p̄4, p̄10]P = 0, [p̄5, p̄6]P = 2p̄0p̄5,

[p̄5, p̄7]P = 2p̄3p̄6 + 2p̄0p̄8, [p̄5, p̄8]P = 2p̄3p̄5, [p̄5, p̄9]P = 4p̄3p̄8, [p̄5, p̄10]P = 0,

[p̄6, p̄7]P =
1
2
(p̄1 + p̄2)p̄6 + p̄3p̄4 + p̄0p̄7, [p̄6, p̄8]P =

1
2
(p̄1 + p̄2)p̄5 + p̄3p̄6

− p̄0p̄8, [p̄6, p̄9]P = (p̄1 + p̄2)p̄8 + 2p̄3p̄7, [p̄6, p̄10]P = 0,

[p̄7, p̄8]P =
1
2
(p̄1 + p̄2)p̄8 − p̄3p̄7 − p̄0(p̄9 + p̄10), [p̄7, p̄9]P =(p̄1+p̄2)(p̄9+p̄10),

[p̄7, p̄10]P = −1
2
(p̄2 + p̄1)p̄2

6 − p̄0p̄6p̄7 + p̄0p̄4p̄8 +
1
2
(p̄1 + p̄2)p̄4p̄5,

[p̄8, p̄9]P = 2p̄3(p̄9 + p̄10), [p̄8, p̄10]P = p̄0p̄6p̄8 − p̄3p̄
2
6 − p̄0p̄5p̄7 + p̄3p̄4p̄5,

[p̄9, p̄10]P = (p̄5p̄7 − p̄6p̄8)(p̄1 + p̄2) + 2p̄3p̄4p̄8 − 2p̄3p̄6p̄7 .
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Relation (3.18) is transformed into

p̄2
10 − p̄4p̄5p̄9 − 2p̄6p̄7p̄8 + p̄9p̄

2
6 + p̄4p̄

2
8 + p̄5p̄

2
7 = 0 .

Additional relation (3.19) in the case n = 2 is again as for Q = Pn(H)

p̄1p̄2 − p̄2
3 − p̄9 = 0 , (7.17)

and can be used in this case for excluding p̄9 from the list of generators.
All Poisson algebras PI (Hn(H)S) for n � 3 are isomorphic to each other.

The same is also valid for the Hamiltonian function.
Elements C

gr

i from ZPI (Hn(H)S) , i = 1, 2, 3, corresponding to elements
Ci, i = 1, 2, 3 from Sect. 3.2.2, are:

C
gr

1 = p̄2
0+p̄1 − p̄2+p̄4 − p̄5, C

gr

2 = p̄1p̄2 − p̄2
3 − p̄9, C

gr

3 =
1
2
(p̄1 − p̄2)(p̄4 − p̄5)

+
1
4
(p̄1 + p̄2)2 − p̄2

3 +
1
4
(p̄4 + p̄5)2 − p̄2

6 − p̄9 + 2p̄10

+
1
2
p̄2
0(p̄1 − p̄2 + p̄4 − p̄5) +

1
4
p̄4
0 .

Note that due to (7.17) it holds C
gr

2 = 0 for n = 2.

7.2.2 Octonionic Case

The expression for the two-body Hamiltonian function for Q = H2(Ca)S
coincides with (7.15), where p̄i, i = 0, . . . , 9 are now generators of the Poisson
algebra

PI

(
H2(Ca)S

) ∼= gr DiffI

(
H2(Ca)S

)
,

corresponding to generators D̄i, i = 0, . . . , 9 of the algebra DiffI

(
H2(Ca)S

)
.

Due to (3.45) commutative relations for them are

[p̄0, p̄1]P = p̄3, [p̄0, p̄2]P = p̄3, [p̄0, p̄3]P =
1
2
(p̄1 + p̄2), [p̄0, p̄4]P = 2p̄6,

[p̄0, p̄5]P =2p̄6, [p̄0, p̄6]P = p̄4 + p̄5, [p̄0, p̄7]P = p̄8, [p̄0, p̄8]P = p̄7, [p̄0, p̄9]P = 0,

[p̄1, p̄2]P =−2p̄0p̄3 − 2p̄7, [p̄1, p̄3]P = −p̄0p̄1 − p̄8, [p̄1, p̄4]P = −2p̄7,

[p̄1, p̄5]P = 0, [p̄1, p̄6]P = −p̄8, [p̄1, p̄7]P = −p̄1(p̄2 + p̄4) + p̄9 + p̄3p̄6 + p̄2
3,

[p̄1, p̄8]P = p̄3p̄5 − p̄1p̄6, [p̄1, p̄9]P = p̄6p̄8 − p̄5p̄7,

[p̄2, p̄3]P = p̄0p̄2 + p̄8, [p̄2, p̄4]P = −2p̄7, [p̄2, p̄5]P = 0, [p̄2, p̄6]P = −p̄8,

[p̄2, p̄7]P = (p̄4 − p̄1)p̄2 + p̄9 − p̄3p̄6 + p̄2
3, [p̄2, p̄8]P = p̄2p̄6 − p̄3p̄5,

[p̄2, p̄9]P = p̄6p̄8 − p̄5p̄7, [p̄3, p̄4]P = 0, [p̄3, p̄5]P = 2p̄8, [p̄3, p̄6]P = p̄7,

[p̄3, p̄7]P =
1
2
(p̄2 − p̄1)p̄6,

[p̄3, p̄8]P = p̄1p̄2 +
1
2
(p̄2 − p̄1)p̄5 − p̄9 − p̄2

3, [p̄3, p̄9]P = p̄4p̄8 − p̄6p̄7, (7.18)

[p̄4, p̄5]P = −4p̄0p̄6, [p̄4, p̄6]P = −2p̄0p̄4, [p̄4, p̄7]P = (p̄1 + p̄2)p̄4,
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[p̄4, p̄8]P = (p̄1 + p̄2)p̄6 − 2p̄0p̄7, [p̄4, p̄9]P = 0, [p̄5, p̄6]P = 2p̄0p̄5,

[p̄5, p̄7]P = 2p̄3p̄6 + 2p̄0p̄8, [p̄5, p̄8]P = 2p̄3p̄5, [p̄5, p̄9]P = 0,

[p̄6, p̄7]P =
1
2
(p̄1 + p̄2)p̄6 + p̄3p̄4 + p̄0p̄7,

[p̄6, p̄8]P =
1
2
(p̄1 + p̄2)p̄5 + p̄3p̄6 − p̄0p̄8, [p̄6, p̄9]P = 0,

[p̄7, p̄8]P =
1
2
(p̄1 + p̄2)p̄8 − p̄3p̄7 + p̄0p̄9 + p̄0p̄

2
3 − p̄0p̄1p̄2,

[p̄7, p̄9]P = −1
2
(p̄1 + p̄2)p̄4p̄5 + p̄0p̄6p̄7 − p̄0p̄4p̄8 +

1
2
(p̄1 + p̄2)p̄2

6,

[p̄8, p̄9]P = p̄3p̄
2
6 − p̄0p̄6p̄8 − p̄3p̄4p̄5 + p̄0p̄5p̄7 .

Elements C
gr

i , i = 1, 2 from ZPI

(
H2(Ca)S

)
, corresponding to elements

C1, C2 from Sect. 3.5.2, have the form

C
gr

1 = p̄2
0 + p̄1 − p̄2 + p̄4 − p̄5, C

gr

2 = p̄4p̄5 − p̄2
6 − 2p̄9 .

7.2.3 Complex Case

From expression (5.26) one gets for Q = Hn(C) the two-body Hamiltonian
function

h =
(1 − r2)2

8mR2
p2

r +
(m1α − m2β)(1 − r2)

2m1m2R2
prp̄0 +

m1α
2 + m2β

2

2m1m2R2
p̄2
0

+
1
2
(
Dhp̄1 + Fhp̄2 + 2Ehp̄3 + Chp̄2

4 + Ahp̄2
5 + 2Bhp̄4p̄5

)
+ V (r),

(7.19)

where p̄i, i = 0, . . . , 5 are generators of the Poisson algebra PI (Hn(C)S) ∼=
gr DiffI (Hn(C)S), corresponding to generators D̄i, i = 0, . . . , 5 of the algebra
DiffI (Hn(C)S). Denote the last generators of PI (Hn(C)S), corresponding to
the generator �̄ of DiffI (Hn(C)S), by p̄�.

The commutative relations for these generators of PI (Hn(C)S) are as
follows

[p̄0, p̄1]P = p̄3, [p̄0, p̄2]P = p̄3, [p̄0, p̄3]P =
1
2
(p̄1 + p̄2), [p̄0, p̄4]P = p̄5,

[p̄0, p̄5]P = p̄4, [p̄0, p̄�]P = 0, [p̄1, p̄2]P = −2p̄0p̄3 − 2p̄�p̄4,

[p̄1, p̄3]P = −p̄0p̄1 − p̄�p̄5, [p̄1, p̄4]P = −p̄�,

[p̄1, p̄5]P = 0, [p̄1, p̄�]P = p̄3p̄5 − p̄1p̄4, [p̄2, p̄3]P = p̄0p̄2 + p̄�p̄5,

[p̄2, p̄4]P = −p̄�, [p̄2, p̄5]P = 0, [p̄2, p̄�]P = p̄2p̄4 − p̄3p̄5,

[p̄3, p̄4]P = 0, [p̄3, p̄5]P = p̄�, [p̄3, p̄�]P =
1
2
(p̄2 − p̄1)p̄5, (7.20)

[p̄4, p̄5]P = −p̄0, [p̄4, p̄�]P =
1
2
(p̄1 + p̄2), [p̄5, p̄�]P = p̄3 .
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The additional relation (3.29) in the case n = 2 now becomes

p̄1p̄2 − p̄2
3 − p̄2

� = 0 . (7.21)

Elements C
gr

i ∈ ZPI (Hn(C)S) , i = 1, 2, 3, corresponding to elements
Ci, i = 1, 2, 3 from Sect. 3.3.2, are

C
gr

1 = p̄2
0 + p̄1 − p̄2 + p̄2

4 − p̄2
5, C

gr

2 = (p̄1 + p̄2)p̄5 − 2p̄3p̄4 + 2p̄0p̄�,

C
gr

3 = p̄1p̄2 − p̄2
3 − p̄2

� .

Note that due to (7.21) it holds C
gr

3 = 0 for n = 2.

7.2.4 Real Case

From expression (5.28) one gets for Q = Hn(R), n � 3 the two-body Hamil-
tonian function in the form

h =
(1 − r2)2

8mR2
p2

r +
(m1α − m2β)(1 − r2)

2m1m2R2
prp̄0 +

m1α
2 + m2β

2

2m1m2R2
p̄2
0

+
1
2

(Chp̄1 + Ahp̄2 + 2Bhp̄3) + V (r) .

(7.22)

The Poisson algebra PI (Hn(R)S) is generated by elements p̄i, i = 0, . . . , 3
for n � 4 and by elements p̄�, p̄i, i = 0, . . . , 3 for n = 3. The commutative
relations for these generators are

[p̄0, p̄1]P = 2p̄3, [p̄0, p̄2]P = 2p̄3, [p̄0, p̄3]P = p̄1 + p̄2,

[p̄1, p̄2]P = −4p̄0p̄3, [p̄1, p̄3]P = −2p̄0p̄1, [p̄2, p̄3]P = 2p̄0p̄2 .
(7.23)

The generator p̄�, if exists, commutes with all other generators.
The additional relation (3.37) in the case n = 3 now becomes

p̄1p̄2 − p̄2
3 − p̄2

� = 0 . (7.24)

Elements C
gr

i ∈ ZPI (Hn(R)S) , i = 1, 2, corresponding to elements
Ci, i = 1, 2 from Sect. 3.4.2, are

C
gr

1 = p̄2
0 + p̄1 − p̄2, C

gr

2 = p̄1p̄2 − p̄2
3 .

Note that due to (7.12) it holds C
gr

2 = p̄2
� for n = 3.

The expression (5.29) implies for Q = H2(R):

h =
(1 − r2)2

8mR2
p2

r +
(m1α − m2β)(1 − r2)

2m1m2R2
prp̄0 +

m1α
2 + m2β

2

2m1m2R2
p̄2
0

+
1
2
(
Chp̄2

1 + Ahp̄2
2 + 2Bhp̄1p̄2

)
+ V (r),

where
[p̄0, p̄1]P = p̄2, [p̄0, p̄2]P = p̄1, [p̄1, p̄2]P = −p̄0 . (7.25)

The Poisson algebra PI

(
H2(R)S

)
is isomorphic to the graded algebra

gr U(so (1, 2)). There is only one central independent element C
gr

1 = p̄2
0 +

p̄2
1 − p̄2

2 in this algebra and this is the simplest noncompact case.
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7.3 Dynamics of the Two-Body System
and the Problem of Particles’ Collision

Note first of all that the classical two-body problem on spaces Pn(H),Pn(C),
Pn(R),Sn and their hyperbolic analogs Hn(H), Hn(C), Hn(R) reaches its full
generality at n = 3, since for n > 3 there is some totally geodesic subspace Q̃,
isometric respectively to P3(H), P3(C), P3(R), S3, H3(H), H3(C), H3(R),
such that it contains initial positions of particles and their initial velocities are
tangent to Q̃. This occurs in accordance with the stabilization of Hamiltonian
functions (7.3), (7.7), (7.10), (7.15), (7.19), (7.22) and corresponding Poisson
algebras for n � 3.

It is known that Hamiltonian mechanics admits the following approach,
which is in close connection with quantum mechanics. Under this approach
smooth functions on a symplectic phase space M are called observables. One
is interested in their evolution w.r.t. a phase flow ϕh

t , corresponding to a
Hamiltonian function h:

ft(x) := f(ϕh
t (x)),

dϕh
t

dt
= Xh, x ∈ M, f ∈ C∞(M) .

Due to (4.4) the evolution of an observable ft is described by the equation

dft

dt
= [ft, h]P . (7.26)

An integral of the flow ϕh
t is a constant observable.

Let now a Lie group G acts in a Poisson way on the space M . One can con-
sider only G-invariant observables and particularly only G-invariant Hamil-
tonian functions. In fact, this program for the two-body problem on two-point
homogeneous space was realized in Sects. 7.1 and 7.2. Indeed, there were found
the full system of independent G-invariant observables r, pr, p0, p1, . . . on the
corresponding cotangent bundle, the expression of the two-body Hamiltonian
function through this system and commutator relations (7.4), (7.6), (7.8),
(7.11), (7.14), (7.16), (7.18), (7.20), (7.23), (7.25). Together with obvious com-
mutator relations

[r, pr]P = 1, [r, pi]P = 0, [pr, pi]P = 0, i = 0, 1, 2, . . .

this allows one to write (7.26) in an explicit form for the base of G-invariant
observables.

Evidently, the functions Cgr
i and C

gr

i from above are integrals of the two-
body motion for any central potential V (r).

Remark 7.1. The construction of AdK0-invariant elements in S(p̃) (Chap. 3),
Remark 4.3 and the Cauchy inequality in real, complex or quaternion vector
spaces imply the following inequalities for functions pi and p̄i on the phase
space.

1. For spaces Pn(H),Hn(H):
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p1, p2, p4, p5, p9, p̄1, p̄2, p̄4, p̄5, p̄9 � 0,

p1p2 − p2
3 − p9 � 0, p4p5 − p2

6 � 0, p̄1p̄2 − p̄2
3 − p̄9 � 0, p̄4p̄5 − p̄2

6 � 0,

p2
7 � p4p9, p2

8 � p5p9, p̄2
7 � p̄4p̄9, p̄2

8 � p̄5p̄9 .

2. For spaces Pn(C),Hn(C):

p1, p2, p̄1, p̄2 � 0, p1p2 − p2
3 − p2

� � 0, p̄1p̄2 − p̄2
3 − p̄2

� � 0 .

3. For spaces Pn(R),Sn, Hn(R):

p1, p2, p̄1, p̄2 � 0, p1p2 − p2
3 � 0, p̄1p̄2 − p̄2

3 � 0 .

4. For spaces P2(Ca),H2(Ca):

p1, p2, p4, p5, p̄1, p̄2, p̄4, p̄5 � 0, p1p2−p2
3 � 0, p̄1p̄2 − p̄2

3 � 0, p4p5 − p2
6 � 0,

p̄4p̄5 − p̄2
6 � 0, |p7| � 14

√
p1p2p4, |p̄7| � 14

√
p̄1p̄2p̄4, |p8| � 14

√
p1p2p5,

|p̄8| � 14
√

p̄1p̄2p̄5, |p9| � 16 · 49
√

p1p2p4p5, |p̄9| � 16 · 49
√

p̄1p̄2p̄4p̄5 .

7.3.1 The Problem of Particles’ Collision

The system of ordinary differential equations for variables r, pr, p0, p1, . . . de-
termines, in particular, the evolution of the distance between particles. If the
potential V is a smooth function on the space (Q × Q)\diag, bounded when
the distance between particles tends to infinity (for a noncompact space Q),
then the only obstruction to the existence of the global solution for this dy-
namical system is the possible collision of particles. For a repulsive potential
V (r) such that V (r) → +∞ as r → 0 a collision can not occur due to the
energy conservation. Consider an attractive potential V (r).

There are two possible scenarios of a particles collision at a moment t0.
The first one, which is quite natural, corresponds to limt→t0−0 r(t) = 0. The
second scenario is more pathological: lim inft→t0−0 r(t) = 0, but limt→t0−0 r(t)
does not exist.

Suppose that for any ε > 0 it holds

V (r) � C1(ε) = const, ‖ grad V (r)‖ � C2(ε) = const, ∀r � ε . (7.27)

Using arguments from [140] (see also [151]) one can prove that the second
scenario is impossible for such potentials.2 Indeed, let

ẋ = f(x), x(0) = x0 (7.28)

be a system of ordinary differential equations, corresponding to the two-body
problem on a two-point homogeneous space Q w.r.t. local coordinates. The
standard existence theorem ([39], Chap. 2) guarantees the existence of the
2 The consideration of Painlevé concerns the n-body problem (n � 3) with New-

tonian interactions in Euclidean space. Denote in this case r(t) := mini�=j rij(t),
where rij is the distance between ith and jth particles. Painlevé proved that if it
holds lim inft→t0−0 r(t) = 0, then also limt→t0−0 r(t) = 0.
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solution of (7.28) in a time interval of length determined by an upper bound
on ‖f(x)‖ in some domain, containing x(0). The energy conservation law and
inequalities (7.27) leads to the boundedness of particles’ velocities and thus
to the boundedness of ‖f(x)‖ for r � ε > 0. Therefore, the condition r(t′) �
ε > 0 implies the existence of a solution for the two-body problem on Q (and
thus the inequality r(t) > 0) for t′ < t < t + Tε, where Tε > 0 depends only
upon ε. Now the assumptions lim inft→t0−0 r(t) = 0 and r(tk) > ε > 0 for a
infinite sequence tk → t0 − 0 leads to a contradiction for t0 − tk < Tε. �

In Euclidean case the critical asymptotic as r → 0 is the centrifugal po-
tential

V ∼ c

r2
, c < 0.

Thus, for potentials V = o(r−2) there are no collisions for general initial
conditions, which do not correspond to the frontal motion of particles. For
curved two-point homogeneous spaces the situation is more subtle.

One can separate initial conditions for the two-body system by values of
the corresponding integrals of motion Cgr

i and C
gr

i . Some of these values may
correspond to the frontal motion of particles along a common geodesic that
leads to their collision. On the other hand, the same values may correspond
to a more complicated motion. In the second case, due to the possible nonin-
tegrability of the two-body problem, it is difficult to guarantee the absence of
collisions.

Other values of integrals cannot correspond to the frontal motion of parti-
cles along a common geodesic. For these values the theorem below guarantees
the absence of particles collision. It generalizes the result, obtained for spaces
of a constant curvature in [160], for all two-point homogeneous spaces.

Choose for the simplicity α = m2/(m1 + m2), β = m1/(m1 + m2). In this
case the functions As,h, Bs,h, Cs,h,Ds,h, Es,h, Fs,h have following asymptotics
as r → 0:

As,h(r)=
1

4mR2r2
+ O(1), Bs,h(r)=O(r), Cs,h(r) =

1
(m1 + m2)R2

+ O(r2),

Ds,h(r) =
1

(m1 + m2)R2
+ O(r2), Es,h(r) = O(r), Fs,h(r) =

1
mR2r2

+ O(1) .

(7.29)

Theorem 7.1. Suppose that the potential V (r) is smooth at r > 0, for any
ε > 0, inequalities (7.27) are valid for some real constants C1(ε), C2(ε) and
V = o(r−2) as r → 0. Then the collision of particles will not happen in the
following cases (everywhere ci = const):

1. Q = Pn(H), n � 3, Cgr
2 = c2 > 0 ;

2. Q = Pn(C), n � 3, Cgr
3 = c3 > 0 ;

3. Q = Pn(R),Sn, n � 3, Cgr
2 = c2 > 0 ;

4. Q = Hn(H) :
a) n � 3, C

gr

2 = c2 > 0 ;
b) n � 2, C

gr

1 = c1 < 0 ;
c) n � 2, C

gr

1 = 0 and
(
p̄2
0 + p̄1 + p̄2 + p̄4 + p̄5

)∣∣
t=0

> 0 ;
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5. Q = Hn(C) :
a) n � 3, C

gr

3 = c3 > 0 ;
b) n � 2, C

gr

1 = c1 < 0 ;
c) n � 2, C

gr

1 = 0 and
(
p̄2
0 + p̄1 + p̄2 + p̄4 + p̄5

)∣∣
t=0

> 0 ;
6. Q = Hn(R) :

a) n � 3, C
gr

2 = c2 > 0 ;
b) n � 2, C

gr

1 = c1 < 0 ;
c) n � 2, C

gr

1 = 0 and
(
p̄2
0 + p̄1 + p̄2

)∣∣
t=0

> 0 ;
7. Q = H2(Ca) :

a) C
gr

1 = c1 < 0 ;
b) C

gr

1 = 0 and
(
p̄2
0 + p̄1 + p̄2 + p̄2 + p̄4 + p̄5

)∣∣
t=0

> 0.

Proof. We shall carry this proof by reductio ad absurdum. Due to the dis-
cussion above one can suppose that some trajectory of the two-body system,
started at t = 0, is regular as 0 < t < t0 and limt→t0−0 r(t) → 0 for some
t0 > 0. Note first of all that inequalities from Remark 7.1, asymptotics (7.29)
and the energy conservation law imply p2(t), p5(t) → 0 or p̄2(t), p̄5(t) → 0 as
t → t0 − 0. Therefore, the equalities Cgr

1 = const, C
gr

1 = const and inequal-
ities from Remark 7.1 again imply that all functions pi, p̄i are bounded as
0 � t < t0 on this trajectory.

Consider the case 4(a). Here, p̄1p̄2 = c2 + p̄2
3 + p̄9 � c2 and therefore p̄1 �

c2/p̄2 → +∞, t → t0−0 that contradicts to p̄1 � c1+ p̄2+ p̄5 → c1, t → t0−0.
Proofs in cases 1, 2, 3, 5(a) and 6(a) are completely similar.

In the case 4(b) one has p̄2
0 + p̄1 + p̄4 = c1 + p̄2 + p̄5 → c1 < 0, t → t0 − 0

that contradicts to inequalities from Remark 7.1. Cases 5(b), 6(b) and 7(a)
are completely similar.

In the case 7(b) one has

p̄2
0 = p̄2 + p̄5 − p̄1 − p̄4 � p̄2 + p̄5 . (7.30)

Together with inequalities from Remark 7.1 this means that conditions p̄2 =
p̄5 = 0 imply p̄i = 0, i = 0, . . . , 9. Thus, it holds (p̄2 + p̄5)|t=0 > 0. Therefore,
without loss of generality, one can additionally suppose that t0 is the minimal
positive value of t such that

lim
t→t0−0

(p̄2 + p̄5) = 0 .

From (7.15), (7.18), (7.26) one gets:

d

dt
(p̄2 + p̄5) = − p̄0(p̄3 + 2p̄6)

(m1 + m2)R2
+ Dh(p̄0p̄3 + p̄7) + Eh(p̄0p̄2 − p̄8)

+ Ch(−p̄7 + 2p̄0p̄6) + Bh(−p̄8 + 2p̄0p̄5) .

Therefore, equality (7.30) and Remark 7.1 imply the following estimate
∣
∣
∣
∣
d

dt
(p̄2 + p̄5)

∣
∣
∣
∣ � C (p̄2 + p̄5) ,

in an ε-neighborhood of the value t0 for some ε > 0 and C = const > 0. In
view of the Gronwall inequality this estimate means that
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|p̄2(t) + p̄5(t) − p̄2(t0 − 0) − p̄5(t0 − 0)| � (p̄2(t0 − 0)
+ p̄5(t0 − 0)) exp(C(t0 − t)) = 0,

for t0−ε < t < t0. This implies the equality p̄2(t)+ p̄5(t) = 0 for some positive
t < t0 that contradicts to the minimality of t0. Proofs in cases 4(c), 5(c) and
6(c) are similar. ��

Remark 7.2. Informally, conditions of Theorem 7.1 mean that at a small
distance the rotation motion of two particles dominates over their translational
motion. In all cases of this theorem except 4(c), 5(c), 6(c) and 7(b) it is not
difficult to find for a concrete potential V , obeying the condition V = o(r2) as
r → 0, a positive lower bound estimate for the distance between particles.

7.3.2 In Search of a Nontrivial Integral of Motion

It is not difficult to see that the center of the Poisson algebra PI (QS), com-
muting with the two-body Hamiltonian function, is not wide enough to imply
the integrability of the two-body problem with a nontrivial potential. Now it
is not known any central potential admitting a nontrivial integral of motion,
i.e., an integral depending on both the variables r, pr and the group vari-
ables p0, p1, . . . (and certainly independent from the Hamiltonian function).
In Sect. 7.5 we shall see that the existence of one such integral for the real
case would lead to the integrability of the two-body problem. Here we shall
describe one possible approach to the search of such integral.

Obviously, the two-body problem with the trivial potential V ≡ 0 is
integrable, since in this case particles move independently. Similarly to the
quantum case (see Remark 5.3), the two-body Hamiltonian function can be
represented in the form h1 +h2 +V (r), where the function hk, k = 1, 2 is pro-
portional to 1/mk and it holds [h1, h2]P = 0. For example, for the function
(7.3) one has:

h1 =
(1 + r2)2

8m1R2
p2

r −
β(1 + r2)
2m1R2

prp0 +
β2

2m1R2
p2
0

+
1 + r2

2m1R2r2

(
sin2(β arctan r)p1 + cos2(β arctan r)p2 − sin(2β arctan r)p3

)

+
(1 + r2)2

8m1R2r2

(
sin2(2β arctan r)p4+cos2(2β arctan r)p5−sin(4β arctan r)p6

)
,

h2 =
(1 + r2)2

8m2R2
p2

r +
α(1 + r2)
2m2R2

prp0 +
α2

2m2R2
p2
0

+
1 + r2

2m2R2r2

(
sin2(α arctan r)p1 + cos2(α arctan r)p2 + sin(2α arctan r)p3

)

+
(1 + r2)2

8m2R2r2

(
sin2(2α arctan r)p4+cos2(2α arctan r)p5+sin(4α arctan r)p6

)
.

Under the choice α = 1, β = 0 functions h1 and h2 are rational w.r.t. the
variable r:
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h1 =
(1 + r2)2

8m1R2
p2

r +
1 + r2

2m1R2r2
p2 +

(1 + r2)2

8m1R2r2
p5,

h2 =
(1 + r2)2

8m2R2
p2

r +
1 + r2

2m2R2
prp0 +

p2
0

2m2R2
+

r2p1 + p2 + 2rp3

2m2R2r2

+
1

8m2R2r2

(
4r2p4 + (1 − r2)2p5 + 4r(1 − r2)p6

)
.

Nevertheless it is not clear how to incorporate a nontrivial potential into
functions h1, h2 not disturbing their commutativity and in such a way that it
would be h = h1 + h2.

Numerical calculations of the Poincaré surfaces of sections by the author
and I. E. Stepanova for reduced two-body systems on spaces Sn and Hn(R)
(see Sect. 7.5) with Coulomb and oscillatory potentials discovered a soft chaos
in these dynamical systems [161]. The meromorphic nonintegrability of these
systems for n = 2 was proved in [171].

7.4 The Center of Mass Problem on Two-Point
Homogeneous Spaces

The importance of the mass center for an isolated system of particles or a
rigid body in Euclidean space stems from its following properties:

1. the mass center of a classical mechanical system moves with a constant
speed along a (geodesic) line;

2. variables corresponding to the mass center are separated from other vari-
ables both in classical and quantum mechanical problems.

These properties imply, in particular, that the (generally complicated) motion
of a classical system can be decomposed into the motion of the center of mass
and the motion of the system with respect to this center, often greatly sim-
plifying the problem. Under the action of external forces the center of mass
moves as if all forces act on the particle located at the center of mass and
having the mass equal to the total mass of the system. An attempt to gener-
alize the concept of the center of mass for the curved two-point homogeneous
Riemannian spaces encounters difficulties related to the absence of nice dy-
namical properties such as 1 and 2 above. It is natural to define the mass
center for the two particles on a two-point homogeneous Riemannian space
as the point on the shortest geodesic interval joining these particles that di-
vides the interval in a fixed ratio. If this ratio is equal to the ratio of particle
masses (as for the center mass concept in Euclidean space), we denote the
corresponding mass center by R1.

However, even for spaces of constant sectional curvature, such a mass
center does not have property 1 [160]. For example, consider two free particles
on the sphere S2. Choose two antipodal points on the sphere (poles) and the
equator corresponding to these poles. Let one particle rests at one pole and
another moves with the constant speed along the equator. Then any point
on the shortest geodesic interval joining such particles does not move along
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a geodesic unless this point coincides with one of the particles. The latter is
obviously senseless. Therefore, for a definition of the mass center on a two-
point homogeneous Riemannian space we must rely on properties different
from the property 1.

7.4.1 Existing Mass Center Concepts for Spaces
of a Constant Curvature

The axiomatic approach to the concept of mass center for spaces of a constant
curvature was developed in [47, 48]. Let A = ((Ai,mi))

N
i=1 be a system (pos-

sibly empty) of mass points Ai with masses mi in the space Q of a constant
sectional curvature, which corresponds to the types 2 or 9 according to the
classification given in Sect. 1.1. Denote by A the set of all such systems and by
A0 the subset of one-particle systems. For any positive real number χ define
the operation χ · A = ((Ai, χmi))

N
i=1.

Theorem 7.2 ([48]). Let Q be a space of a constant curvature Sn or Hn(R).
There is a unique map U of the set A onto the set A0, satisfying the following
axioms:
1) U ((A1,m1)) = (A1,m1);
2) U (A ∪ B) = U (U(A) ∪ U(B));
3) U(χ · A) = χ · U(A);
4) U ◦ q = q ◦ U, where q is an arbitrary isometry of the space Q;
5) the map U is continuous with respect to the natural topology on the space A.
Two systems are close to each other in this topology, if their mass points are
pairwise close and have similar masses. Points with small masses are close to
the empty set.

For the sphere Sn this map U moves the system ((A1,m1), (A2,m2)) into
the mass point (mass center), located on the geodesic interval joining the points
A1, A2. The distances ρi, i = 1, 2 between the mass center and the points Ai

are determined from the following equations:

m1 sin
(ρ1

R

)
= m2 sin

(ρ2

R

)
, ρ1 + ρ2 = ρ,

where ρ is the distance between particles. The mass of the mass center is
assumed to be

m1 cos
(ρ1

R

)
+ m2 cos

(ρ2

R

)
.

For the Lobachevski space Hn(R) the map U is obtained by using the hyper-
bolic functions sinh, cosh instead of the corresponding trigonometric functions
sin, cos. For example for two mass points one has:

m1 sinh
(ρ1

R

)
= m2 sinh

(ρ2

R

)
, ρ1 + ρ2 = ρ , (7.31)

and the mass of the mass center is

m1 cosh
(ρ1

R

)
+ m2 cosh

(ρ2

R

)
.
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We denote the mass center defined in this way by R2. Note that this mass
center for two particles with equal masses located at the diametrically opposite
points of a sphere has an arbitrary position on the corresponding equator and
the null mass, which is equivalent to the empty set.

This approach to the definition of the center of mass corresponds to the
mass center concept in the flat space-time of special relativity (SR) [48]. In
fact, for a given inertial frame of reference, there exists a one-to-one corre-
spondence between possible particles’ velocities in SR and mass points in the
space H3(R), with masses equal to the rest masses in SR. Therefore, a system
A = ((Ai,mi))

N
i=1 ∈ A corresponds to a system ς(A) of moving particles in

SR with rest masses mi and velocities vi. The total mass m and momentum
p of the latter system are defined by the following equalities

m :=
N∑

i=1

mi√
1 − v2

i

, p :=
N∑

i=1

mivi√
1 − v2

i

.

One can define an effective particle Ξ in SR with the rest mass m and the
velocity v such that

mv√
1 − v2

= p .

This particle determines the mass center ς−1(Ξ) of the system A in the space
H3(R), which geometrically coincides with R2.

It is clear that this definition of a mass center can be easily generalized to
systems with a distributed mass.

The definition of the mass center R2 seems to be quite natural. Unfortu-
nately, no “good” dynamical properties are known for it. In order to find the
mass center with such properties, one can try to search for a pure geomet-
rical mass center without any mass. In this case one need not be concerned
about the validity of axioms 2 and 3 of Theorem 7.2 and thus has more free-
dom. This approach to the mass center concept concerning the free motion on
spaces Sn, Hn(R), n = 2, 3 was developed with various degrees of generality
in [128, 152, 215]. Consider the following definition of a mass center, used in
these papers. Let Q = Hn(R), n = 2, 3. Define a rigid body in Q by a non-
negative density function �(x), x ∈ Q with a compact connected support and
consider the function

Υ(x) =
∫

Q

sinh2

(
ρ(x, y)

R

)
�(y)dµ(y) , (7.32)

where µ is the measure on the space Q, generated by the Riemannian metric.
This function has a unique minimum and the coordinate of this minimum can
be chosen as a definition of the center of mass R3 for the rigid body. It is clear
that the similar definition can be given for a system of particles, replacing the
integral in (7.32) by the corresponding sum.

Unlike the center of mass R2, the mass center R3 for two particles is
determined from the following equation (cf. (7.31))

m1 sinh
(

2ρ1

R

)
= m2 sinh

(
2ρ2

R

)
, ρ1 + ρ2 = ρ . (7.33)
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Here as before ρ is the distance between the particles and ρi, i = 1, 2 is the
distance between the ith particle and the mass center located on the shortest
geodesic interval joining the particles.

Call a free movement of a rigid body a free rotation if all points of this
body move along trajectories of some elliptic transformation (see Sect. 1.3.3).
Call a free movement of a rigid body a free transvection if all points of this
body move along trajectories of some transvection. The mass center R3 has
the following dynamical properties.

1. A free rotation of a rigid body about its mass center is possible in the
space Hn(R). For n = 2 there is only one such rotation [128] and for
n = 3 there are three independent rotations [152] about three pairwise
perpendicular axes passing through the mass center R3.

2. All possible free transvections of a rigid body have axes passing through
the mass center R3. For n = 2 there are two such geodesics. For n = 3
there are three such geodesics and they coincide with the axes of free
rotations.

3. The mass center R3 is uniquely determined by any of the properties 1 or
2.

4. The velocities of all possible free rotations and transvections are constant.

Note that there are no free movements of a rigid body along horocycles [128].
The situation for the spaces Q = Sn, n = 2, 3 is analogous if we restrict

ourselves to rigid bodies of “moderate” sizes, i.e., if the diameter of a rigid
body is no more than πR/4 [215]. This condition is required in order to differ
transvections and rotations of rigid bodies by the location of immovable points
of corresponding one-parameter isometry subgroups with respect to the rigid
body itself, since all such subgroups of the isometry group SO(n + 1) are
conjugated in SO(n + 1), and their trajectories in the space Q are equivalent.

Note that most of free movements of a rigid body in constant curvature
spaces do not correspond to the center of mass R3 movement along a geodesic
even when this rigid body is a homogeneous ball [215]. Due to this fact and
property 1 above there are no points in a rigid body that move along geodesics
for an arbitrary initial velocities. Since a rigid body is a limiting case of a
system of interactive particles, the same is also valid for such systems.

For a system of two particles we shall try to find a point on the shortest
geodesic interval, joining particles, that divides it in a definite ration such
that this point moves with a constant speed along a geodesic for some initial
particles’ velocities and an arbitrary interactive potential.

Definition 7.1. Let Q2 = (Q×Q)\Qop be a set of two-particle positions that
correspond to the only one shortest path joining particles. A map from Q2 to
Q is called the dynamical mass center if

1. it maps a two-particle position from Q2 to the point x0 on the geodesic
interval joining the particles that divides the length of this interval in some
ratio depending only on particles’ masses;

2. for any geodesic on Q there should be some initial positions and velocities
of particles such that for any interactive potential the point x0 moves along
this geodesic with a constant speed.
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For brevity, we call the value of this map the “dynamical mass center”.

Note that this definition is appropriate for any complete Riemannian space
if particles are sufficiently close to each other.

7.4.2 The Connection of Existing Mass Center Concepts
with the Two-Body Hamiltonian Functions

Consider now the connection between formulas for the two-body Hamiltonian
functions from Sects. 7.1, 7.2 and different mass center concepts.

Suppose that the geodesic interval γ̃(s) from Sect. 5.1, joining particles,
moves simultaneously with their motion. The point γ̃(0) divides the geodesic
interval in the ratio α/(1 − α), 0 � α � 1. On the other hand, the expansion
of the Lie algebra g in Proposition 1.2 is specialized for the point γ̃(0). Denote
by w(t) the evolution of the point γ̃(0). This function can be discontinuous,
when particles are in Qop ⊂ Q × Q, but for Q 
= Pn(R) a general trajectory
on Q × Q does not intersect Qop.

Consider the simplest compact case Q = S2 or Q = P2(R) with the
Hamiltonian function given by (7.13). Here the group K0 is trivial and (Q ×
Q)\(diag∪Qop) = I × SO(3). Therefore the function −p0 is the Hamiltonian
function of the vector field Λ̃l on T ∗ SO(3) (see (4.27), (4.28) and the proof
of Proposition 4.9). Here we identifies the initial position of the system on
(Q × Q)\(diag∪Qop) = I × SO(3) with the point (r(0), e) ∈ I × SO(3).

Clearly, the projection of the system motion onto the second factor of the
product I × SO(3) is described by the map:

t → exp(tcΛ)

if the projection d̃h of the differential dh onto the second factor of the product
T ∗I × T ∗ SO(3) equals −cdp0, where c = const along the trajectory of the
system. This case corresponds to a particle motion along a common geodesic
in such a way that the motion of the point w on Q is described by the formula

w(t) = exp(tcΛ)w(0)

and due to the second claim of Proposition 5.1 the point w moves along the
geodesic γ̃|t=0 with a constant speed.

It remains to verify the condition d̃h = −cdp0 on the trajectory of the
system. Evidently

d̃h =
(

(m1α − m2β)(1 + r2)
2m1m2R2

pr +
m1α

2 + m2β
2

m1m2R2
p0

)
dp0

+ (Csp1 + Bsp2) dp1 + (Asp2 + Bsp1) dp2 .

(7.34)

For an arbitrary potential V the values r and pr can be arbitrary, therefore
d̃h = −cdp0 iff m1α = m2β, p0 = const, p1 ≡ p2 ≡ 0. But due to (7.14) these
values of pi are really conserved along a trajectory of the system. Thus, one
gets:
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Proposition 7.1. For two particles on a two-point homogeneous Riemannian
space the center of mass R1 is the only one dynamical mass center correspond-
ing to a particles motion along a common geodesic.

Proof. For the space Q = S2 or Q = P2(R) the claim follows from the consid-
erations above, since under the condition m1α = m2β the point γ̃(0) coincides
with the mass center R1. For other compact two-point homogeneous spaces
an every geodesic lies on a two-dimensional completely geodesic submanifold
(see Remark 1.1) that reduces the consideration to the case Q = S2,P2(R).
For noncompact two-point homogeneous spaces the consideration is similar
due to Remark 5.2. ��

Consider now the possibility of the motion of the same system, correspond-
ing to Hamiltonian function (7.13) under the action of the one-parametric
group, generated by the element f2λ,1 ∈ so(3). This motion is generated by
the differential cdp2, c 
= 0 and corresponds to the rotation of the geodesic γ̃
about the fixed point γ̃(0). Arguing as above one concludes that in this case
the expression for d̃h should be cdp2. From the expression (7.34) one gets:

Csp1 + Bsp2 = 0, Bsp1 + Asp2 = c,
(7.35)

(m1α − m2β)(1 + r2)
2m1m2R2

pr +
m1α

2 + m2β
2

m1m2R2
p0 = 0 .

As above for a general potential V (r) values of r and pr are arbitrary and the
last equation from (7.35) gives again α = m2/(m1 + m2) and then p0 ≡ 0.
For the same reasons the first equation implies p1 ≡ 0, p2 ≡ 0 and thus c = 0.
Therefore, the property 1 of the mass center R3 of a rigid body is not valid
for two particles and an arbitrary potential.

Suppose now that two particles are joined along the geodesic γ̃ by the
weightless rod. This system (barbell) is a particular case of a rigid body.
Consider the possibility of the same rotation for this system. The phase space
for it is T ∗ SO(3) and the Hamiltonian function can be obtained from (7.13)
by setting r = const, pr ≡ 0, V (r) = const, (for simplicity V (r) ≡ 0). The last
equation from (7.35) now gives p0 ≡ 0 and therefore

dp0

dt
= (As − Cs)p1p2 + Bs(p2

1 − p2
2) = 0

due to (7.14) and (7.26).
If Bs(r) 
= 0, then from the first equation (7.35) one gets p2 = −Csp1/Bs

and
dp0

dt
=

B2
s − AsCs

Bs
p2
1 = 0 .

Due to the definition of As, Bs and Cs in Sect. 5.2 it holds AsCs − B2
s 
= 0,

therefore p1 ≡ 0, p2 ≡ 0 and there is no any rotation.
The possibility Bs = 0 implies p1 ≡ 0, p2 ≡ c/As 
= 0. Again due to (7.14)

and (7.26), these values are conserved along the trajectory of the system.
This means that the pure rotation of the barbell is possible about the fixed

point γ̃(0), defined by the equation:
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m1 sin (4α arctan r) = m2 sin (4(1 − α) arctan r) . (7.36)

Since the distances ρi, i = 1, 2 between the ith particle and the point γ̃(0) are
ρ1 = 2Rα arctan r, ρ2 = 2R(1 − α) arctan r, equation (7.36) is the analogue
of (7.33) that corresponds to the property 1 of the mass center R3 of a rigid
body.

Reasoning in the similar way one obtains the following. The transvection
of the point w along the trajectory of the one parameter group exp(teλ,1) is
realized iff d̃h = cdp1, where c = const along a trajectory of the system. For
fixed initial conditions and an arbitrary potential this is impossible for the
system of two particles. Thus the property 2 of the mass center R3 of a rigid
body is not valid for two particles and an arbitrary potential. For the barbell
the condition d̃h = cdp1 along a trajectory is realized iff p0 ≡ 0, p2 ≡ 0, p1 =
c/Cs 
= 0, Bs = 0 that in particular implies (7.36). This is the realization of
the property 2 of the mass center R3 for the barbell.

The similar rotation and transvection are possible also for a general com-
pact and noncompact two-point homogeneous spaces on a completely geodesic
subspaces of a constant curvature.

7.5 Hamiltonian Reduction of the Two-Body Problem
on Constant Curvature Spaces

Here we consider the Hamiltonian reduction of the two-body problem on the
spaces Sn and Hn(R), using results of Sects. 7.1.4, 7.2.4 and Theorem 4.6.
This reduction was carried out by pure coordinate evaluation in [160, 166]
and in invariant form in [163, 165].

7.5.1 Hamiltonian Reduction of the Two-Body Problem
on Spheres

As was mentioned above in Sect. 7.3 the classical two-body problem on the
spheres Sn reaches its full generality at n = 3.

If n = 1 the system posses two-degrees of freedom and one integral asso-
ciated with the action of the symmetry group SO(2) ∼= S1. Therefore, it is
integrable for every potential V (r). Similar to (7.10), (7.13) the expression for
the Hamiltonian function in this case for α = m2/(m1 + m2) looks like

h =
(1 + r2)2

8mR2
p2

r +
p2
0

2(m1 + m2)R2
+ V (r) ,

where p0 = const. Evidently, the reduced phase space is T ∗(S1\pt) ∼= T ∗
R

with canonical coordinates r, 0 < r < ∞ and pr.
Suppose now n = 2. In this case one has expansion (7.2) of the phase space

(
T ∗I × T ∗S2

S

)
∪ T̃ ∗Qop =: Mess ∪ T̃ ∗Qop,

where Qop = S2. Here dim Mess = 8, dim T̃ ∗Qop = 6 and a typical trajectory
of the system does not intersects T̃ ∗Qop. One can reduce the space T ∗S2

S w.r.t.
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the SO(3)-action using Theorem 4.6. Since in this case the group K0 is trivial,
the space T ∗S2

S is reduced to the Ad∗
SO(3)-orbit (see Remark 4.6) defined by

the equation
p2
0 + p2

1 + p2
2 = c = const � 0 ,

where p0, p1, p2 are linear coordinates on so∗(3). Thus, the reduced space for
Mess and c > 0 is

M̃ess,c = T ∗I × S2 ,

where the symplectic structure on S2 ⊂ so∗(3) ∼= E
3 is the area form up

to a multiplicative constant and the reduced Hamiltonian function for α =
m2/(m1 + m2) is

h̃=
(1 + r2)2

8mR2
p2

r+
p2
0

2(m1 + m2)R2
+

1
2
(
Cs(r)p2

1 + As(r)p2
2 + 2Bs(r)p1p2

)
+V (r) .

A suitable pair of functions from the triple p0, p1, p3 is local coordinates on
S2 and their Poisson brackets are defined from (7.14).

Evidently, there is a two-dimensional invariant submanifold in M̃ess,c de-
fined by the equations p1 ≡ p2 ≡ 0. It corresponds to the bodies motion along
a common geodesic.

Moreover, for m1 = m2 = 2m one has

h̃ =
1

8mR2

(
(1 + r2)2p2

r + p2
0 + (1 + r2)

(
p2
1 +

p2
2

r2

))
+ V (r)

that implies due to (7.14) and (7.26) the existence of two other invariant
submanifolds. The first one is defined by equations p0 ≡ p2 ≡ 0 and the
second one by equations p0 ≡ p1 ≡ 0. These manifolds correspond to a pure
transvection and a pure rotation of the system (cf. Sect. 7.4.2), but generally
with nonconstant velocity.

The value c = 0 corresponds to the integrable system with one degree of
freedom. Here M̃ess,0 = T ∗I, p0 ≡ p1 ≡ p2 ≡ 0 and

h̃ =
(1 + r2)2

8mR2
p2

r + V (r) . (7.37)

In the case n = 3 the situation is more subtle. Now Mess := T ∗I ×
T ∗(SO(4)/SO(2)) and one should reduce the space T ∗ (SO(4)/SO(2)). The
Lie algebra so(4) has the base (see Sect. 3.4.1) Ψij , 1 � i < j � 4. Let
ψij , 1 � i < j � 4 be coordinates in so∗(4), corresponding to the base Ψij , 1 �
i < j � 4, dual to the base Ψij , 1 � i < j � 4. Let

ẽ1 = −Ψ23 − Ψ14, ẽ2 = −Ψ24 + Ψ13, ẽ3 = −Ψ12 − Ψ34,

ẽ4 = Ψ23 − Ψ14, ẽ5 = Ψ24 + Ψ13, ẽ6 = Ψ12 − Ψ34

(7.38)

be another base in so(4). The commutator relations for ẽi, i = 1, . . . , 6 are
(see (1.12)):

[ẽ1, ẽ2] = ẽ3, [ẽ2, ẽ3] = ẽ1, [ẽ3, ẽ1] = ẽ2, [ẽ4, ẽ5] = ẽ6, [ẽ5, ẽ6] = ẽ4,

[ẽ6, ẽ4] = ẽ5, [ẽi, ẽj ] = 0, 1 � i � 3, 4 � j � 6 .
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This means that the triples ẽ1, ẽ2, ẽ3 and ẽ4, ẽ5, ẽ6 correspond to the expansion
so(4) ∼= so(3) ⊕ so(3) and the base ẽi, i = 1, . . . , 6 is orthonormal w.r.t. the
Killing form on so(4).

Let p̃i, i = 1, . . . , 6 be coordinates in so∗(4), corresponding to the base
ẽi, i = 1, . . . , 6, dual to ẽi, i = 1, . . . , 6. An Ad∗

SO(4)-orbit Oβ is defined by
equations

I1 := p̃2
1 + p̃2

2 + p̃2
3 = β2

1 , I2 := p̃2
4 + p̃2

5 + p̃2
6 = β2

2 ; β1, β2 ∈ R; β1, β2 � 0

or equivalently by equations

I1 = (ψ23 + ψ14)
2 + (ψ13 − ψ24)

2 + (ψ12 + ψ34)
2 = β2

1 ,

I2 = (ψ23 − ψ14)
2 + (ψ13 + ψ24)

2 + (ψ12 − ψ34)
2 = β2

2 .
(7.39)

In the general case β1 
= 0, β2 
= 0 these orbits are diffeomorphic to S2 × S2.
Another equivalent form of Ad∗

SO(4)-invariants is

J1 :=
1
2
(I1 + I2) = ψ2

12 + ψ2
13 + ψ2

14 + ψ2
23 + ψ2

24 + ψ2
34 ,

J2 :=
1
4
(I1 − I2) = ψ23ψ14 − ψ13ψ24 + ψ12ψ34 .

(7.40)

In notations of Sect. 3.4.1 the stationary Lie subalgebra k0
∼= so(2), cor-

responding to a general two-body position in S3, is generated by the ele-
ment Ψ34. Therefore, the subspace ann k0 ⊂ so∗(4) is defined by the equation
ψ34 = 0 or equivalently by p̃3 + p̃6 = 0.

Due to definition of operators D1,D2,� in Sect. 3.4.1 and their correspon-
dence with functions p1, p2, p� from Sect. 7.1.4 one has

p0 = −2ψ12, p1 = 4(ψ2
13 + ψ2

14), p2 = 4(ψ2
23 + ψ2

24) ,

p3 = −4 (ψ13ψ23 + ψ14ψ24) , p� = 4 (ψ13ψ24 − ψ14ψ23)
(7.41)

on the subspace ann k0 and therefore

p2
0 + p1 + p2 = 2(β2

1 + β2
2), p� = β2

2 − β2
1 .

Let us verify Assumption 4.3, which implies Assumption 4.2. Consider a
point z ∈ O′

β := Oβ ∩ ann k0 with coordinates (p̃1, p̃2, p̃3, p̃4, p̃5, p̃6 = −p̃3).
First suppose β1 
= 0, β2 
= 0. Then a vector Y =

∑6
i=1 yiẽ

i ∈ Tzso
∗(4)

belongs to TzOβ iff

p̃1y1 + p̃2y2 + p̃3y3 = 0, p̃4y4 + p̃5y5 − p̃3y6 = 0 . (7.42)

Since dim ann k0 = 5, the orbit Oβ is not transversal to ann k0 at the point z
iff TzOβ ⊂ ann k0. Via coordinates the last inclusion means that the system
(7.42) implies y3+y6 = 0. Since equations in (7.42) are independent from each
other, it is possible only if p̃1 = p̃2 = p̃4 = p̃5 = 0, p̃3 
= 0 and then β1 = β2.

Let now β1 
= 0, β2 = 0 and then p̃3 = p̃4 = p̃5 = p̃6 = 0. In this case a
vector Y = y1ẽ

1 + y2ẽ
2 + y3ẽ

3 belongs to TzOβ iff
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p̃1y1 + p̃2y2 = 0 . (7.43)

Since y3 does not occur in (7.43), the condition y3 = 0 is not a corollary of
(7.43) and Oβ is transversal to ann k0 at the point z. The same is also valid
for β1 = 0, β2 
= 0.

Thus, for orbits Oβ with β1 
= β2, β1 � 0, β2 � 0 Assumptions 4.3 and 4.2
are satisfied. Let Oβ be such an orbit. Then O′

β = Oβ ∩ ann k0 is a smooth
submanifold in so∗(4). Since

[Ψ34, ẽ1] = −1
2
ẽ2, [Ψ34, ẽ2] =

1
2
ẽ1, [Ψ34, ẽ4] = −1

2
ẽ5, [Ψ34, ẽ5] =

1
2
ẽ4,

the Ad∗
K0

-action is the synchronous orthogonal rotation in 2-planes in the
space so∗(4) generated by pairs ẽ1, ẽ2 and ẽ4, ẽ5, respectively. Due to β1 
= β2

the submanifold O′
β does not contain points with coordinates p̃1 = p̃2 = p̃4 =

p̃5 = 0 and the Ad∗
K0

-action on O′
β is free that implies the Assumption 4.4.

Thus, the factor space Õβ := O′
β/Ad∗

K0
is a smooth manifold.

1. Suppose β1 > 0, β2 > 0, β1 
= β2. In this case Õβ is diffeomorphic to the
sphere S2. Indeed, if β1 > β2, then any Ad∗

K0
-orbit in O′

β contains a unique
point with coordinates p̃1 =

√
β2

1 − p̃2
3 > 0, p̃2 = 0, p̃3, p̃4, p̃5, p̃6 = −p̃3

which satisfy the equation

p̃2
3 + p̃2

4 + p̃2
5 = β2

2 . (7.44)

This means that Ad∗
K0

-orbits in O′
β are in one-to-one correspondence with

points of the sphere S2 ⊂ so∗(3) ∼= E
3, defined by (7.44), and any local

coordinates on S2 correspond to local coordinates on Õβ . In the case β2 >
β1 > 0 the consideration is similar.
Thus, due to Theorem 4.6, in the case β1, β2 > 0, β1 
= β2 the reduced
phase space for Mess is M̃ess,β = T ∗I × S2 and the reduced Hamiltonian
function is defined by (7.10), where

p2
0 + p1 + p2 = 2(β2

1 + β2
2), p1p2 − p2

3 = p2
� = (β2

1 − β2
2)2 .

Any two functions from the quadruple p0, p1, p2, p3 are independent on
M̃ess,β . The commutator relations for these functions are in (7.11). The
reduced Hamiltonian system has two degrees of freedom and for its inte-
grability one needs an additional integral, independent on the Hamiltonian
function. Such integral is not known for any nontrivial potential.

2. Consider now the case β1 = 0, β2 > 0. Here the submanifold O′
β is the

circle defined by the equations

p̃1 = p̃2 = p̃3 = p̃6 = 0, p̃2
4 + p̃2

5 = β2
2

and the group K0 acts on it freely and transitively. Thus, the reduced space
for Mess is M̃ess,β = T ∗I. Moreover it holds ψ12 = 0, ψ23 = −ψ14, ψ24 =
ψ13 on O′

β and therefore due to (7.41) p0 = p3 = 0, p1 = p2 = β2
2 . This

implies
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Csp1 + Asp2 =
(1 + r2)2β2

2

4mR2r2

and therefore

h̃ =
(1 + r2)2

8mR2

(
p2

r +
β2

2

r2

)
+ V (r)

that corresponds to an integrable system with one degree of freedom.
3. The case β1 > 0, β2 = 0 is completely similar to the preceding one with

M̃ess,β = T ∗I and

h̃ =
(1 + r2)2

8mR2

(
p2

r +
β2

1

r2

)
+ V (r) .

4. In the case β1 = β2 = 0 one has Oβ = O′
β = Õβ = pt, M̃ess,β = T ∗I and

the reduced Hamiltonian function is defined by (7.37).
5. Consider the last case β1 = β2 > 0 and show that particles motion occurs

now along a two-dimensional sphere S2 ⊂ S3 that reduces this case to the
case n = 2, considered above. Indeed, subtracting equations (7.39) from
each other one obtains on O′

β :

ψ14ψ23 = ψ24ψ13 .

Recall that initially particles are on the geodesic x3 = x4 = 0 of the sphere
x2

1 + x2
2 + x2

3 + x2
4 = R2 and their initial “collective” momenta (i.e., all

momenta except the momentum pr) are identified with elements of the
subspace p̃ ⊂ so∗(4), spanned by Ψij , 1 � i � 2, 2 � j � 4, i < j. Using
the rotation about this geodesic (by the action of the subgroup K0) one
can suppose that ψ14|t=0 = 0, which corresponds either to ψ24|t=0 = 0 or
to ψ13|t=0 = 0.
In the latter case ψ14|t=0 = ψ13|t=0 = 0 along the whole K0-trajectory
and one can suppose again ψ24|t=0 = 0.
In the case ψ14|t=0 = ψ24|t=0 = 0 particles velocities at t = 0 are tangent
to the 2-sphere x2

1+x2
2+x2

3 = R2, x4 = 0, which implies that both particles
will remain on this 2-sphere for all t > 0.

This completes the classification of all cases for the Hamiltonian reduction of
the two-body problem on the spheres Sn.

7.5.2 Hamiltonian Reduction of the Two-Body Problem
on Spaces H2 and H3

Again, the classical two-body problem on the hyperbolic spaces Hn(R) reaches
its full generality at n = 3.

First consider the case n = 2. According to expansion (7.1) the phase
space is now

T ∗I × T ∗ (H2(R)S

)
,

where H2(R)S is the unit sphere bundle over the hyperbolic plane H2(R).
Here the group K0 is trivial, the bundle H2(R)S is diffeomorphic to the group
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O0(1, 2) and the space T ∗ (H2(R)S

)
is reduced to an Ad∗

O0(1,2)-orbit (see
Remark 4.6).

The Ad∗
O0(1,2)-action conserves the expression p̄2

0 + p̄2
1− p̄2

2, where p̄0, p̄1, p̄2

are linear coordinates on so∗(1, 2) (see Sect. 7.2.4). A one-sheet hyperboloid,
defined by the equation p̄2

0 + p̄2
1 − p̄2

2 = c > 0, represents the one type of
Ad∗

O0(1,2)-orbits, diffeomorphic to the manifold S1 × R. Another type is rep-
resented by the sheet of a two-sheet hyperboloid, defined by the equation
p̄2
0 + p̄2

1 − p̄2
2 = c < 0. Orbits of this type are diffeomorphic to the man-

ifold R
2. The next type consists of two orbits: p̄2

0 + p̄2
1 = p̄2

2, p̄2 > 0 and
p̄2
0 + p̄2

1 = p̄2
2, p̄2 < 0, diffeomorphic to the manifold R

2\pt. The last type
consists of the most degenerated orbit: p̄0 = 0, p̄1 = 0, p̄2 = 0.

The reduced Hamiltonian function for α = m2/(m1 + m2) is

h̃ =
(1 − r2)2

8mR2
p2

r

+
p̄2
0

2(m1 + m2)R2
+

1
2
(
Ch(r)p̄2

1 + Ah(r)p̄2
2 + 2Bh(r)p̄1p̄2

)
+ V (r) .

A suitable pair of functions from the triple p̄0, p̄1, p̄3 is local coordinates on a
two-dimensional Ad∗

O0(1,2)-orbit and their Poisson brackets are defined from
(7.23).

Similar to the spherical case, a two-dimensional invariant submanifold of
the reduced space defined by equations p1 ≡ p2 ≡ 0 corresponds to the bodies
motion along a common geodesic. Also, since for m1 = m2 = 2m, α = 1/2 one
has Bh ≡ 0 there are two other invariant submanifolds in this case. The first
one corresponds to a pure transvection and is defined by equations p0 ≡ p2 ≡ 0
and the second one, defined by p0 ≡ p1 ≡ 0, corresponds to a pure rotation of
the system, both generally with nonconstant velocity.

For the most degenerated orbit one has an integrable reduced Hamiltonian
system with one degree of freedom. Now M̃ess,0 = T ∗I and

h̃ =
(1 − r2)2

8mR2
p2

r + V (r) . (7.45)

Consider the two-body problem on the space H3(R). The corresponding
phase space is

T ∗I × T ∗ (H3(R)S

)
(7.46)

and also it holds G = O0(1, 3), K0 = SO(2). Choose the base Ψij , i � i <
j � 4, of the Lie algebra so(1, 3) in the form (cf. (1.15))

Ψij := Ψij =
1
2

(Eij − Eji) , 2 � i < j � 4; Ψi :=
1
2

(Ei1 + E1i) , 2 � i � 4 .

The commutator relations for this base are

[Ψkj ,Ψml] =
1
2
(
δjm Ψkl −δkm Ψjl +δkl Ψjm −δjl Ψkm

)
, 2 � k, j,m, l � 4,

[Ψij ,Ψk] =
1
2
(
δjk Ψi −δik Ψj

)
, 2 � i < j � 4, 2 � k � 4, (7.47)
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[Ψi,Ψk] =
1
2

Ψik, 2 � i, k � 4, i 
= k .

Here we suppose as before that Ψkj = −Ψjk, 2 � k, j � 4.
In notations of Sect. 1.2 elements Ψij , 2 � i < j � 4 span the Lie subal-

gebra k ∼= so(3) of the algebra so(1, 3) and elements Ψi, 2 � i � 4 span the
subspace p. The transition from the algebra so(4) to the algebra so(1, 3) is
generated by the substitution

Ψij → Ψij , 2 � i < j � 4, Ψ1i → iΨi, 2 � i � 4 . (7.48)

Now the subalgebra k0 from expansion (1.2) is generated by Ψ34, the subal-
gebra a is generated by Ψ2, the subspace p2λ is spanned by elements Ψ3,Ψ4

and the subspace k2λ is spanned by elements Ψ23,Ψ24, cf. (3.31).
Let ψij , 2 � i < j � 4, ψi, 2 � i � 4 be coordinates in so∗(1, 3), corre-

sponding to the base Ψ
ij

, 2 � i < j � 4, Ψ
i
, 2 � i � 4, dual to the base

Ψij , 2 � i < j � 4, Ψi, 2 � i � 4. Using substitution (7.48) one obtains from
(7.40) the following Ad∗

O0(1,3)-invariants:

J1 = ψ
2

23 +ψ
2

24 +ψ
2

34 −ψ
2

2 −ψ
2

3 −ψ
2

4,

J2 = ψ23 ψ4 −ψ3 ψ24 +ψ2 ψ34 .
(7.49)

It can be easily verified by direct calculations that the rank of Ad∗
O0(1,3)-

action equals 4 at all points of so∗(1, 3) except 0. Therefore, any connected
component of a level set in so∗(1, 3), defined by J1 = β1, J2 = β2, is a 4-
dimensional Ad∗

O0(1,3)-orbit for β1, β2 ∈ R, β2
1 +β2

2 
= 0. The same is also valid
for the level set J1 = J2 = 0, after excluding the point 0 ∈ so∗(1, 3).

The subspace ann k0 is defined by the condition ψ34 = 0. Similarly to the
spherical case one gets

p̄0 = −2ψ2, p̄1 = 4(ψ
2

3 +ψ
2

4), p̄2 = 4(ψ
2

23 +ψ
2

24),

p̄3 = −4
(
ψ3 ψ23 +ψ4 ψ24

)
, p̄� = 4

(
ψ3 ψ24 −ψ4 ψ23

)

on ann k0 and therefore

p̄2
0 + p̄1 − p̄2 = −4 J1, p̄� = −4 J2 . (7.50)

Let Oβ be some Ad∗
O0(1,3)-orbit, for which J1 = β1, J2 = β2. Consider

a point z ∈ O′
β := Oβ ∩ ann k0 different from the origin with coordinates

(
ψ2, ψ3, ψ4, ψ23, ψ24, ψ34 = 0

)
. This point is regular for the map so∗(1, 3) →

R
2 defined by (J1, J2) and a vector

Y = y2 Ψ
2
+y3 Ψ

3
+y4 Ψ

4
+y23 Ψ

23
+y24 Ψ

24
+y34 Ψ

34 ∈ Tzso
∗(1, 3)

belongs to TzOβ iff

ψ23 y23 + ψ24 y24 − ψ3 y3 − ψ4 y4 = ψ2 y2,

ψ4 y23 − ψ3 y24 − ψ24 y3 + ψ23 y4 = −ψ2 y34 .
(7.51)
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Since dim ann k0 = 5, the orbit Oβ is not transversal to ann k0 at the point z
iff TzOβ ⊂ ann k0. Via coordinates the last inclusion means that the system
(7.51) implies y34 = 0. For ψ2 = 0 the variable y34 has an arbitrary value
and Oβ is transversal to ann k0 at the point z. For ψ2 
= 0 the independent
variables y23, y24, y3, y4 uniquely define values of y2 and y34. Therefore, the
system (7.51) implies y34 = 0 only if ψ4 = ψ3 = ψ24 = ψ23 = 0. This means
that β1 = −ψ

2

2 < 0, β2 = 0. Thus, for β1 � 0 or β2 
= 0 the orbit Oβ , different
from the origin, satisfies Assumptions 4.2 and 4.3.

Since

[Ψ34,Ψ23]=−1
2

Ψ24, [Ψ34,Ψ24]=
1
2

Ψ23, [Ψ34,Ψ4]=
1
2

Ψ3, [Ψ34,Ψ3]=−1
2

Ψ4 ,

the Ad∗
K0

-action is the synchronous orthogonal rotation in two 2-planes in the
space so∗(1, 3), generated by pairs Ψ23,Ψ24 and Ψ3,Ψ4 respectively.

1. Let us show that in the case β2 = 0 a particles motion occurs along a two-
dimensional hyperbolic subspace H2(R) ⊂ H3(R) that reduces this case to
the case n = 2, considered above.
Indeed, now it holds ψ23 ψ4 = ψ24 ψ3. Consider the space H3(R) as the
sheet with x1 � 1 of the two-sheet hyperboloid

x2
1 − x2

2 − x2
3 − x2

4 = R2

in the Minkowski space, see Sect. 1.3.3. Suppose that initially particles
are on the geodesic x3 = x4 = 0. Their initial “collective” momenta
are identified with elements of the subspace p̃ ⊂ so∗(1, 3), generated by
Ψ

23
,Ψ

24
,Ψ

i
, 2 � i � 4. Using the rotation about this geodesic (the action

of the subgroup K0) one can suppose ψ4

∣
∣
t=0

= 0 that corresponds either
to ψ24

∣
∣
t=0

= 0 or to ψ3

∣
∣
t=0

= 0.
In the latter case ψ4|t=0 = ψ3|t=0 = 0 along the whole K0-trajectory and
one can suppose again ψ24|t=0 = 0.
In the case ψ4|t=0 = ψ24|t=0 = 0 particles velocities at t = 0 are tangent
to the hyperbolic subspace H2(R), defined by the equation x4 = 0, and
both particles will remain on it for all t > 0.

2. Let now Oβ be an Ad∗
K0

-orbit for β2 
= 0. Then O′
β = Oβ ∩ ann k0 is a

smooth submanifold in so∗(1, 3). Due to β2 
= 0 the submanifold O′
β does

not contain points with coordinates ψ3 = ψ4 = ψ23 = ψ24 = 0 and the
Ad∗

K0
-action on O′

β is free that implies the Assumption 4.4. Thus, the factor
space Õβ := O′

β/Ad∗
K0

is a smooth manifold.
An every Ad∗

K0
-orbit in O′

β contains a unique point with coordinates ψ24 =
0, ψ23 > 0. For this point it holds ψ4 = β2/ψ23 and

ψ
2

2 +ψ
2

3 = ψ
2

23 −
β2

2

ψ
2

23

− β1 . (7.52)

The right hand side in (7.52) is nonnegative for
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ψ23 � 1√
2

√

β1 +
√

β2
1 + 4β2

2 > 0.

Also, for these values of ψ23 it infinitely increases in a monotone way.
Therefore, (7.52) and the inequality ψ23 > 0 define the surface in the
subspace

span(Ψ
2
,Ψ

3
,Ψ

23
) ⊂ so∗(1, 3),

diffeomorphic to R
2, with global coordinates ψ2, ψ3.

Thus, Ad∗
K0

-orbits in O′
β for β2 
= 0 are in one-to-one correspondence with

points of this surface and due to Theorem 4.6 the reduced phase space for
(7.46) is diffeomorphic to T ∗I × R

2. The reduced Hamiltonian function is
given by (7.22), where due to (7.50) it holds

p̄2
0 + p̄1 − p̄2 = −4β1, p̄1p̄2 − p̄2

3 = p̄2
� = 16β2

2 .

This completes the classification of all cases for the Hamiltonian reduction of
the two-body problem on the hyperbolic space Hn(R).

Any two functions from the quadruple p0, p1, p2, p3 are independent on
a reduced phase space. The commutator relations for these functions are in
(7.23). Again the reduced Hamiltonian system has two degrees of freedom and
the problem of its integrability for nontrivial potentials is open.



8

Quasi-Exactly Solvability of the Quantum
Mechanical Two-Body Problem on Spheres

It is assumed that a quantum mechanical system is exactly solvable if its
energy levels and corresponding eigenstates are known in explicit form. Usu-
ally, this solvability is a consequence of existing of many symmetries for this
system.

Sometimes only a part of the spectrum and corresponding eigenvectors
are known in explicit form. Such systems are called quasi-exactly solvable
[195, 196, 197]. In this section we will show that the two-body quantum
mechanical problem on spheres with Coulomb and oscillator potentials is
quasi-exactly solvable. For other compact two-point homogeneous spaces cor-
responding problems lead to the Heun equation.

First we shall describe the common scheme for finding an infinite sequence
of eigenvalues for two-body Hamiltonians on a compact two-point homoge-
neous space Q without detailed description of the self-adjoint extension of
formal Hamiltonians, which will be done later.

In notations of Chap. 5 we will suppose below that m1α = m2β. Operators
D2

0,D1,D2, . . . from the expression for the two-body Hamiltonian H (one
of (5.22)–(5.25)) act on the space QS

∼= G/K0. Let ψD ∈ L2(G/K0) be
their common eigenfunction. Then one can try to find an eigenfunction of
the Hamiltonian H in the form f(r)ψD, where r is a radial coordinate on
the corresponding interval I from expansion (5.2). For example one needs a
common eigenvector of operators D2

0,D1,D2,D3 for the Hamiltonian (5.24)
and D2

0,D
2
1,D

2
2, {D1,D2} for the Hamiltonian (5.25). Note that for particles

with equal masses these conditions could be made less restrictive: ψD should
not be an eigenvector of operators D3,D6 for the Hamiltonians (5.22), (5.24),
or D3, {D4,D5} for (5.23), or {D1,D2} for (5.25), since in this case Bs ≡
Fs ≡ 0.

Evidently, for such choice of ψD the following stationary Schrödinger equa-
tion

H (f(r)ψD) = Ef(r)ψD (8.1)

is equivalent to the spectral problem for an ordinary differential equation for
a function f(r) and an energy level E (in other words to a one-dimensional
Shrödinger equation).

A.V. Shchepetilov: Calculus and Mechanics on Two-Point Homogeneous Riemannian Spaces,
Lect. Notes Phys. 707, 191–217 (2006)
DOI 10.1007/3-540-35386-0 8 c© Springer-Verlag Berlin Heidelberg 2006
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The search for all common eigenfunctions of operators D2
0,D1,D2, . . . is

not an easy problem. Note, however, that due to the compactness of QS there
is a trivial common eigenfunction of D2

0,D1,D2, . . ., universal for all Q. It is
a function ψD = const 
= 0 with the common eigenvalue equals 0.

In following sections we shall find all common eigenfunctions of operators
D2

0,D1,D2, . . . for the spheres Sn and projective spaces Pn(R). Then we shall
return to corresponding one-dimensional Shrödinger equations. This chapter
is based upon [170].

Recall first of all basic facts concerning linear representations of compact
Lie groups.

8.1 Regular Representations of Compact Lie Groups

Let G be a compact connected Lie group and µ be a biinvariant positive
measure on G, unique up to an arbitrary multiplicative constant [88]. Let
L2(G, dµ) be a Hilbert space of measurable complex-valued functions on G,
square integrable w.r.t. the measure µ. Define two unitary left representations
of G in the space L2(G, dµ). The left regular representation T l acts by the left
shifts (

T l
qf
)
(g) = f(q−1g), q, g ∈ G, f ∈ L2(G, dµ)

and the right regular representation T r acts by the right shifts
(
T r

q f
)
(g) = f(gq), q, g ∈ G, f ∈ L2(G, dµ) .

Evidently, these representations are equivalent with the intertwining operator
f(g) → f(g−1). It is well known that these representations can be decomposed
into direct sums of finite-dimensional unitary irreducible representations (ir-
reps). Each of these irreps is contained in T l or T r with a multiplicity equal
to its dimension and any linear irreducible representation of G is equivalent
to an irreps from this sum [13, 199].

Let T be a full system of unitary irreps for G in spaces U, � = 1, 2, . . ..
Choose in every U an orthonormal base (e,k)d�

k=1, d := dimC U. Define
matrix elements ti,k of operators T r

q by the equation T r
q e,k =: ti,k(q)e,i or

equivalently by ti,k(q) := 〈e,i, T
r
q e,k〉U�

, q ∈ G. Since

ti,k(gq)e,i = T r
g T r

q e,k = tj,i(g)ti,k(q)e,j , g, q ∈ G ,

one has
ti,k(gq) = ti,j(g)tj,k(q) . (8.2)

Therefore, the subspace R,i ⊂ L2(G, dµ), spanned by functions (ti,j(g))d�
j=1,

is invariant under operators T r
q and the representation T r|R�,i

is equiv-
alent to T. On the other hand, formula (8.2) implies that the subspace
L,j ⊂ L2(G, dµ), spanned by functions (ti,j(g))d�

i=1, is invariant under opera-
tors T l

q and the representation T l
∣
∣
L�,j

is again equivalent to T. The functions

(ti,j(g))d�
i,j=1, � = 1, 2, . . . form an orthogonal base in the space L2(G, dµ)

[13, 88, 199] and
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‖ti,j‖2
L2(G,dµ) =

µ(G)
d

.

Thus, the space

T :=
d�⊕

i=1

R,i =
d�⊕

j=1

L,j

is invariant under representations T r and T l. The representation T r inter-
mixes spaces L,j of representations T l and vise versa the representation T l

intermixes spaces R,i of representations T r. The space L2(G, dµ) of repre-
sentations T r and T l is expanded into irreps as follows

L2(G, dµ) =
⊕



T =
⊕



d�⊕

i=1

R,i =
⊕



d�⊕

j=1

L,j .

For a Lie subgroup K0 of the group G the subspace L2 (G,K0, dµ) ⊂
L2(G, dµ), consisting of functions invariant w.r.t. all right K0-shifts on G,
is invariant w.r.t left G-shifts. Therefore, there are only two possibilities:

L,j ∩ L2 (G,K0, dµ) = L,j and L,j ∩ L2 (G,K0, dµ) = 0 .

The consideration above implies the following proposition.

Proposition 8.1. Let

T̃ := T ∩ L2 (G,K0, dµ) , d̃ := dimC

(
R,i ∩ L2 (G,K0, dµ)

)
.

Evidently, the value d̃ does not depend on i = 1, . . . , d. The representation
T l
∣
∣
T̃�

is expanded into the direct sum of equivalent irreps in spaces LK0
,k , k =

1, . . . , d̃, which are among of L,j. On the other hand

T̃ =
d�⊕

i=1

R̃,i ,

where the spaces R̃,i, i = 1, . . . , d, are isomorphic to each other.

Let now G be the identity component of the isometry group for a two-point
homogeneous space Q and as above K0 be its stationary subgroup correspond-
ing to an element from QS . Operators Di, constructed in Chap. 3, are polyno-
mial w.r.t. infinitesimal generators of right G-shifts. Therefore, they conserve
the spaces T̃ and generally intermix its direct summands LK0

,k , k = 1, . . . , d̃

with constant � and different k. On the other hand they act in spaces R̃,i

and their actions are isomorphic to each other for constant � and different
i = 1, . . . , d.
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8.2 Common Eigenfunctions of Operators Di

for Spheres Sn and Projective Spaces Pn(R)

In the present section we follow the consideration from [170] that generalizes
results for cases Q = S2 and Q = S3 found in [162] and [184] respectively.

First of all one can get some a priori information on eigenvalues of common
eigenfunctions for operators D2

0,D1,D2,D3 in the case Q = Sn, n � 3 or for
operators D2

0,D
2
1,D

2
2, {D1,D2} in the case Q = S2.

Proposition 8.2. Let ψD be a common eigenfunction for operators D2
0,D

′
1,

D′
2,D

′
3 with eigenvalues δ0, δ1, δ2 and δ3 respectively, where D′

i = Di, i =
1, 2, 3 for Q = Sn, n � 3 and D′

1 = D2
1, D′

2 = D2
2, D′

3 = 1
2{D1,D2} for

Q = S2. Then

1. δ1 = δ2 and δ3 = 0;
2. D0ψD is an eigenfunction for operators D2

0,D
′
1,D

′
2,D

′
3 with the same

eigenvalues δ0, δ1, δ2 and δ3 respectively;
3. if D0ψD 
∼ ψD, then D0ψD ±

√
δ0ψD is an eigenfunction for operators

D0,D
′
1,D

′
2,D

′
3;

4. if D0ψD ∼ ψD, then either D0ψD = 0 or δ1 = δ2 = (n − 1)(n − 3)/4.

Proof. Consider the case Q = Sn, n � 3. Relations [D0,D3] = D1 − D2 and
[D1,D2] = −2{D0,D3} (see (3.35)) imply

[D0,D3]ψD = δ3D0ψD − D3D0ψD = (D1 − D2)ψD = (δ1 − δ2)ψD ,

δ3D0ψD + D3D0ψD = {D0,D3}ψD = −1
2
[D1,D2]ψD = 0 . (8.3)

The last two equations lead to

2δ3D0ψD = (δ1 − δ2)ψD . (8.4)

If δ3 
= 0, then the last equation implies D0ψD ∼ ψD and the relation
[D0,D1] = −2D3 gives δ3ψD = D3ψD = − 1

2 [D0,D1]ψD = 0. Thus, δ3 = 0
and (8.4) implies δ1 = δ2 that proves the first claim of the proposition.

Now from (8.3) one gets D3D0ψD = 0 and the first two relations (3.35)
imply D1D0ψD = D2D0ψD = δ1D0ψD. The relation D2

0D0ψD = δ0D0ψD is
evident that completes the proof of the second claim.

The relation D2
0ψD = δ0ψD is equivalent to

(
D0 +

√
δ0 id

) (
D0 −

√
δ0 id

)

ψD = 0. Now if D0ψD 
=
√

δ0ψD, then ψ−
D :=

(
D0 −

√
δ0 id

)
ψD is an eigen-

function for the operator D0. The function ψ−
D is also an eigenfunction for

operators D1,D2,D3 due to the second claim. The consideration for the func-
tion ψ+

D :=
(
D0 +

√
δ0 id

)
ψD is completely similar. Thus, the third claim is

proved.
Assume now D0ψD = δ′0ψD. Then the last relation from (3.35) gives

2δ′0δ2ψD =
1
2
(n − 1)(n − 3)δ′0ψD .

This means either δ′0 = 0 or δ1 = δ2 = (n − 1)(n − 3)/4 that proves the last
claim.

The case Q = S2 is completely similar. ��
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In this section, we shall use notations of Sect. 8.1 for G = SO(n + 1) and
K0 = SO(n−1). Below we mean by the complexification gC of the Lie algebra
g the following set

so(n + 1, C) =
(
A ∈ gl(n + 1, C)| A + AT = E

)
. (8.5)

From now we shall treat complex spaces R,i as simple left modules over
gC. Their subspaces R̃,i consist of elements annulled by the subalgebra kC

0
∼=

so(n − 1, C) ⊂ gC.
The classification of such modules based on the notion of a dominant

weight is well known [53, 60] (see also appendix C for a brief description). In
order to apply this theory one should use a form of so(n + 1, C), described in
appendix C and different from (8.5). Besides, since Bk := so(2k + 1, C) and
Dk := so(2k, C) are different series of simple complex Lie algebras, we shall
consider cases of odd and even n separately.

8.2.1 The Case n = 2k

In this section, we shall use notations from Appendix C.1. In particular, by
Bk we mean the set (C.1). First of all we shall construct the isomorphism
gC ∼= Bk in explicit form.

Let

J2k+1 =






1√
2
Ek 0 1√

2
Sk

0 1 0
i√
2
Sk 0 −i√

2
Ek




 ∈ GL(2k + 1, C) .

It is easily verified that

J2k+1S2k+1J
T
2k+1 = E2k+1 .

Therefore, the equation AT S2k+1 + S2k+1A = 0 for A ∈ gl(2k + 1, C) is
equivalent to the equation BT +B = 0, where B :=

(
JT

2k+1

)−1
AJT

2k+1. Thus,
the map

B → JT
2k+1B

(
JT

2k+1

)−1
(8.6)

is the isomorphism between gC and Bk.
Let

C =









0 α A− a A+

−α 0 B− b B+

−AT
− −BT

−
−a −b C ′

−AT
+ −BT

+









∈ g ,

where

A− =
(
a−(k−1), . . . , a−1

)
, A+ = (a1, . . . , ak−1) , B− =

(
b−(k−1), . . . , b−1

)
,

B+ = (b1, . . . , bk−1) , ai, bi, a, b ∈ R, C ′ ∈ so(2k − 1) .

Move the second row and the second column of the matrix C to the last
positions. This gives the matrix
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C̃ =









0 A a A+ α
−AT

− −BT
−

−a C̃ ′ −b
−AT

+ −BT
+

−α B− b B+ 0









∈ so(2k + 1), C̃ ′ ∈ so(2k − 1) .

The transformation (8.6) now gives for Ĉ := JT
2k+1C̃

(
JT

2k+1

)−1 the expression

Ĉ =
1

2









−2iα Z− − iZ+Sk−1

√
2z Z−Sk−1 + iZ+ 0

−Z
T
− − iSk−1Z

T
+ −ZT

− − iSk−1Z
T
+

−
√

2z̄ Ĉ′ −
√

2z

−Sk−1Z
T
− + iZ

T
+ −Sk−1Z

T
− + iZT

+

0 Z− − iZ+Sk−1

√
2z̄ Z−Sk−1 + iZ+ 2iα









,

where Z− := A− + iB−, Z+ := A+ + iB+, z := a + ib, Ĉ ′ ∈ Bk−1. Let us
identify Lie algebras gC and Bk through the map C → Ĉ. Due to the definition
of Ψij in Sect. 1.3.3 one gets the following formulas

Ψ12 =
i
2
Fkk, Ψ1,k+2 =

1
2
√

2
(Fk0 − F0k) , Ψ2,k+2 = − i

2
√

2
(Fk0 + F0k) ,

Ψ1i =
1
4

(Fkj + Fk,−j + F−kj + F−k,−j) , j = i − k − 2, 3 � i � k + 1 ,

Ψ1i =
i
4

(Fkj − Fk,−j + F−kj − F−k,−j) , j = i − k − 2, k + 3 � i � 2k + 1 ,

Ψ2i =
i
4

(F−kj + F−k,−j − Fkj − Fk,−j) , j = i − k − 2, 3 � i � k + 1 ,

Ψ2i =
1
4

(Fkj − Fk,−j + F−k,−j − F−kj) , j = i − k − 2, k + 3 � i � 2k + 1 ,

which imply

D1 =
1
2

(Fk0 − F0k)2 +
1
2

k−1∑

j=1

{F−kj + Fkj , Fk,−j + F−k,−j} ,

D2 = −1
2

(Fk0 + F0k)2 +
1
2

k−1∑

j=1

{F−kj − Fkj , Fk,−j − F−k,−j} , (8.7)

D3 =
i
2
(
F 2

k0 − F 2
0k

)
+ i

k−1∑

j=1

(FkjFk,−j − F−kjF−k,−j) , D0 = −iFkk ,

for k � 2 and

D0 = −iF11, D1 =
1√
2

(F10 − F01) , D2 =
i√
2

(F10 + F01)

for k = 1.
Since the case k = 1 does not fit the general scheme due to the triviality of

the group K0, we assume from now k � 2. The case k = 1 will be considered
below.
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Let R,i be the space VBk
(λ) for a highest weight (C.4), where mi ∈ Z+

and ṼBk
(λ) be a subspace of VBk

(λ) annulled by the subalgebra kC

0
∼= Bk−1.

An element v ∈ ṼBk
(λ), v 
= 0 is a highest vector of the trivial one-dimensional

Bk−1-module. Then Propositions C.1 and C.2 imply the existence of such
numbers m′

j ∈ Z+, j = 1, . . . , k, that

mk � m′
k � mk−1 � . . . � m′

2 � m1 � m′
1 � −m1 ,

m′
k � 0 � m′

k−1 � 0 � . . . � m′
2 � 0 � |m′

1| .

Thus, m′
j = 0, j = 1, . . . , k − 1 and therefore mj = 0, j = 1, . . . , k − 2 .

From now till the end of the present subsection suppose

λ = mk−1εk−1 + mkεk, mk � mk−1 � 0, mk,mk−1 ∈ Z+ .

In this case, Proposition C.1 implies that any module VDk
(m′

kεk) ⊂ VBk
(λ)

contains the unique one-dimensional module VBk−1(0). This fact leads to

dim ṼBk
(λ) = mk − mk−1 + 1 . (8.8)

Thus, from Proposition 8.1 one gets the following expansion [102]:

L2 (SO(2k + 1),SO(2k − 1), dµ)

=
⊕

mk � mk−1

mk,mk−1 ∈ Z+

(mk − mk−1 + 1)VBk
(mkεk + mk−1εk−1) ,

where the left hand side is considered as a restriction of the left regular rep-
resentation for the group SO(2k + 1).

On the other hand, the space

L2 (SO(2k + 1),SO(2k − 1), dµ)

as a DiffSO(2k+1)(SO(2k + 1)/SO(2k − 1))-module is expanded as

L2 (SO(2k + 1),SO(2k − 1), dµ) (8.9)

=
⊕

mk � mk−1

mk,mk−1 ∈ Z+

(dim VBk
(mkεk + mk−1εk−1)) ṼBk

(mkεk + mk−1εk−1) ,

where dim VBk
(mkεk + mk−1εk−1) is given by (C.8). Let

D+ :=
k−1∑

j=1

FkjFk,−j +
1
2
F 2

k0, D− :=
k−1∑

j=1

F−kjF−k,−j +
1
2
F 2

0k ,

C̃ := C|L2(SO(2k+1),SO(2k−1),dµ) = F 2
kk + {Fk0, F0k}

+
k−1∑

j=1

({Fkj , Fjk} + {Fk,−j , F−jk})
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be operators from L2 (SO(2k + 1),SO(2k − 1), dµ), where C is the universal
Casimir operator (C.6). According to the general agreement made in Chap. 3
we consider elements Fkk,D+,D− from the complexification of the algebra
U (so(2k + 1, C))SO(2k−1) modulo the ideal

(U (so(2k + 1, C))so(2k − 1, C))SO(2k−1) ⊂ U (so(2k + 1, C))SO(2k−1)
,

i.e., as elements of the algebra DiffSO(2k+1) (SO(2k + 1)/SO(2k − 1))C.
Due to (C.3) and (C.9), the operator D+ “raises” weight subspaces of

ṼBk
(λ) and the operator D− “lowers” them.
Since [Fkj , Fk,−j ] = [F−kj , F−k,−j ] = 0, one gets the following relations

D1 = D+ + D− +
1
2

(
F 2

kk − C̃
)

, D2 = −D+ − D− +
1
2

(
F 2

kk − C̃
)

,

D3 = i
(
D+ − D−) ,D+ =

1
4

(D1 − D2) −
i
2
D3 , (8.10)

D− =
1
4

(D1 − D2) +
i
2
D3, C̃ = −D2

0 − D1 − D2 .

Commutator relations (3.35) now give

[Fkk,D+] = 2D+, [Fkk,D−] = −2D−, (8.11)

[D+,D−] = −1
2
F 3

kk +
1
2
C̃Fkk +

1
4
(2k − 1)(2k − 3)Fkk . (8.12)

Formulas (C.5) and (C.7) imply

C̃
∣
∣
∣
ṼBk

(λ)
=

((
k + mk−

1
2

)2

+
(
k + mk−1 −

3
2

)2

−
(
k − 1

2

)2

−
(
k − 3

2

)2
)

id .

(8.13)
It follows from the paper [125] that

ṼBk
(λ) = V−νεk

⊕ V−(ν−2)εk
⊕ . . . ⊕ V(ν−2)εk

⊕ Vνεk
, (8.14)

where ν = mk − mk−1 and all summands are one-dimensional weight spaces
w.r.t. the Cartan subalgebra hk.1

Formulas (C.3) and (C.9) imply

D+ : Vjεk
→ V(j+2)εk

, D− : Vjεk
→ V(j−2)εk

.

The action of operators Fkk,D+,D− in the space ṼBk
(λ) was calculated

in [125] w.r.t. some base. In particular, in ṼBk
(λ) there are no nontrivial

invariant subspaces w.r.t. this action.
We shall obtain simpler formulas for the D+ and D−-action w.r.t. a base

in ṼBk
(λ) with a normalization different from those in [125].

1 In Appendix C.4 we shall give a proof of expansion (8.14) independent from the
theory of Yangians used in [125].
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Lemma 8.1. Let Lν := (−ν,−ν + 2, . . . , ν − 2, ν). There is a base (χj)j∈Lν

in ṼBk
(λ) such that

Fkkχj = jχj , D+χj =
1
4
(j − mk − mk−1 − 2k + 3)(j − ν)χj+2 , (8.15)

D−χj =
1
4
(j + mk + mk−1 + 2k − 3)(j + ν)χj−2 , (8.16)

where χj = 0 if j 
∈ Lν .

Proof. Since the action of an algebra, generated by operators Fkk,D+,D−,
is irreducible in ṼBk

(λ), one can define by induction nonzero elements χj ∈
Vjεk

, j ∈ Lν such that formulas (8.15) are valid.
Prove by induction formula (8.16). For j = −ν it is evident. Suppose that

(8.16) is valid for j = −ν,−ν + 2, . . . , i, where i < ν. Then using (8.13) one
gets

1
4
(i − mk − mk−1 − 2k + 3)(i − ν)D−χi+2 = D−D+χi

=
(
[D−,D+] + D+D−)χi

=
(

1
2
F 3

kk − 1
2
C̃Fkk − 1

4
(2k − 1)(2k − 3)Fkk

)
χi

+
1
4
(i + mk + mk−1 + 2k − 3)(i + ν)D+χi−2

=
1
2

(
i3−i

(
m2

k + m2
k−1+(2k − 1)mk+(2k − 3)mk−1+

1
2
(2k − 1)(2k − 3)

))
χi

+
1
16

(i + mk + mk−1 + 2k − 3)(i + ν)(i − mk − mk−1 − 2k + 1)(i − 2 − ν)χi

=
1
16

(i− mk − mk−1−2k + 3)(i − ν)(i + mk + mk−1 + 2k − 1)(i + 2 + ν)χi,

due to the identity

(i − mk − mk−1 − 2k + 3)(i − ν)(i + mk + mk−1 + 2k − 1)(i + 2 + ν)
− (i + mk + mk−1 + 2k − 3)(i + ν)(i − mk − mk−1 − 2k + 1)(i − 2 − ν)

= 8i3−8i

(
m2

k+m2
k−1 + (2k − 1)mk + (2k − 3)mk−1+

1
2
(2k − 1)(2k − 3)

)
.

Since (i − mk − mk−1 − 2k + 3)(i − ν) 
= 0, we obtain

D−χi+2 =
1
4
(i + mk + mk−1 + 2k − 1)(i + 2 + ν)χi

that completes the induction. ��

Lemma 8.1, expansion (8.9) and relations (8.10) effectively describe the ac-
tion of operators D0,D1,D2,D3 in the space L2 (SO(2k + 1),SO(2k − 1), dµ).
Consider the problem of finding all common eigenvectors ψD of operators
D2

0,D1,D2 and optionally D3. It is equivalent to the problem of finding all
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common eigenvectors of operators D2
0,D

+ + D− and optionally D+ − D− in
the space ṼBk

(λ).
Eigenvectors for the operator D2

0 are

c+χj + c−χ−j , c± ∈ C, j ∈ Lν , j � 0

with eigenvalues −j2. Since
(
D+ + D−) (c+χj + c−χ−j)

=
1
4
(j − mk − mk−1 − 2k + 3)(j − ν) (c+χj+2 + c−χ−j−2)

+
1
4
(j + mk + mk−1 + 2k − 3)(j + ν) (c+χj−2 + c−χ−j+2) ,

the requirement
(
D+ + D−) (c+χj + c−χ−j) ∼ c+χj + c−χ−j

implies (j − mk − mk−1 − 2k + 3)(j − ν) = 0 that leads to two cases: j =
mk − mk−1 and j = mk + mk−1 + 2k − 3.

In the first case, one gets
(
D+ + D−) (c+χmk−mk−1 + c−χ−mk+mk−1

)

= (mk − mk−1)
(

mk + k − 3
2

)
(
c+χmk−mk−1−2 + c−χ−mk+mk−1+2

)

that implies one of three possibilities

1. mk − mk−1 = 0;
2. mk − mk−1 − 2 = −mk + mk−1;
3. mk − mk−1 − 2 = 0, c+ + c− = 0.

Thus, we obtain the following eigenvectors:

1. (D+ + D−) χ0 = 0 for mk − mk−1 = 0;
2. (D+ + D−) (χ1 + χ−1) =

(
mk + k − 3

2

)
(χ1 + χ−1) for mk ∈ N, mk−1 =

mk − 1;
3. (D++D−) (χ1 − χ−1) = −

(
mk + k − 3

2

)
(χ1 − χ−1) for mk ∈ N, mk−1 =

mk − 1;
4. (D+ + D−) (χ2 − χ−2) = 0, mk−1 = mk − 2, mk = 2, 3, . . ..

In the second case one gets mk + mk−1 + 2k − 3 = j � mk − mk−1 that
implies 0 � mk−1 � 3

2 − k and thus k = 1 that contradicts to the assumption
k � 2.

Using relations (8.10) this consideration can be summarized in the follow-
ing proposition.

Proposition 8.3. For n = 2k, k � 2 there are four series of common
eigenvectors in ṼBk

(mkεk + mk−1εk−1), mk,mk−1 ∈ Z+ for the operators
D2

0,D1,D2:

1. D2
0χ0 = D3χ0 = 0, D1χ0 = D2χ0 = −mk(mk + 2k − 2)χ0, mk = mk−1;
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2. D2
0(χ1 + χ−1) = −(χ1 + χ−1),

D2(χ1 + χ−1) = −mk(mk + 2k − 2)(χ1 + χ−1),
D1(χ1 + χ−1) =

(
−m2

k − 2(k − 2)mk + 2k − 3
)
(χ1 + χ−1),

D3(χ1 + χ−1) = i
(
mk + k − 3

2

)
(χ1 − χ−1), mk−1 = mk − 1,mk ∈ N

3. D2
0(χ1 − χ−1) = −(χ1 − χ−1),

D1(χ1 − χ−1) = −mk(mk + 2k − 2)(χ1 − χ−1),
D2(χ1 − χ−1) =

(
−m2

k − 2(k − 2)mk + 2k − 3
)
(χ1 − χ−1),

D3(χ1 − χ−1) = −i
(
mk + k − 3

2

)
(χ1 + χ−1), mk−1 = mk − 1,mk ∈ N;

4. D2
0(χ2 − χ−2) = −4(χ2 − χ−2), D3(χ2 − χ−2) = −4i

(
mk + k − 3

2

)
χ0,

D1(χ2 − χ−2) = D2(χ2 − χ−2) =
(
−m2

k − 2(k − 2)mk + 2k − 3
)
(χ2 −

χ−2),mk−1 = mk − 2,mk = 2, 3, 4, . . .

Only the first vector is also an eigenvector for the operator D3.
Multiplicities of corresponding eigenvalues in L2(SO(n + 1),SO(n − 1), dµ)

are equal to dim VBk
(mkεk + mk−1εk−1) and can be calculated in explicit form

using (C.8).

Consider the case k = 1, n = 2. Now the group K0 is trivial and therefore
ṼB1(λ) = VB1(λ). The algebra B1 = so(3, C) ∼= sl(2, C) = A1 is spanned by
elements F11, F01, F10 with commutator relations

[F11, F01] = −F01, [F11, F10] = F10, [F10, F01] = F11 .

Its representation theory is well known: all its finite dimensional irreducible
modules are of the form

VB1(mε1) = V−mε1 ⊕ V−(m−1)ε1 ⊕ . . . ⊕ V(m−1)ε1 ⊕ Vmε1 ,

where m ∈ Z+ ∪
(
Z+ + 1

2

)
, all Vjε1 are one-dimensional weight subspaces

w.r.t. h1 = span(F11) and the operators

F10 : Vjε1 → V(j+1)ε1 , j = −m, . . . ,m − 1,

F01 : Vjε1 → V(j−1)ε1 , j = −m + 1, . . . ,m

are bijective.
We shall consider only m ∈ Z+ since

L2(SO(3), dµ) =
⊕

m∈Z+

(2m + 1)VB1(mε1) .

Thus, there are additional weight subspaces in the module VB1(mε1) w.r.t.
expansion (8.14) and the action of the algebra, generated by the operators
D+ = 1

2F 2
10,D

− = 1
2F 2

01, is not irreducible in VB1(mε1).
One can choose a base (χj)

m
j=−m in VB1(mε1) such that

χj ∈ Vjε1 , F11χj = jχj , F10χj = − 1√
2

√
(m − j)(m + j + 1)χj+1 ,

F01χj = − 1√
2

√
(m + j)(m − j + 1)χj−1 ,

where as above χj = 0 for |j| > m.
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Eigenvectors for the operator D2
0 = −F 2

11 are

c+χj + c−χ−j , c± ∈ C, j = 0, 1, . . . ,m

with eigenvalues −j2. Since
(
D+ + D−) (c+χj + c−χ−j)

=
1
4

√
(m − j)(m + j + 1)(m − j − 1)(m + j + 2) (c+χj+2 + c−χ−j−2)

+
1
4

√
(m + j)(m − j + 1)(m + j − 1)(m − j + 2) (c+χj−2 + c−χ−j+2) ,

the requirement
(
D+ + D−) (c+χj + c−χ−j) ∼ c+χj + c−χ−j

implies (m − j)(m + j + 1)(m − j − 1)(m + j + 2) = 0 that gives two cases:
j = m and j = m − 1.

In the first case, one gets

(
D+ + D−) (c+χm + c−χ−m) =

1
2

√
m(2m − 1) (c+χm−2 + c−χm+2)

that implies one of three possibilities

1. m = j = 0;
2. m − 2 = −m;
3. m − 2 = 0, c+ + c− = 0.

This gives the following eigenvectors:

1. (D+ + D−) χ0 = 0, m = 0;
2. (D+ + D−) (χ1 + χ−1) = 1

2 (χ1 + χ−1) , m = 1;
3. (D+ + D−) (χ1 − χ−1) = − 1

2 (χ1 − χ−1) , m = 1;
4. (D+ + D−) (χ2 − χ−2) = 0, m = 2.

It is easily seen that these eigenvectors correspond to eigenvectors from
Proposition 8.3 for mk = m,mk−1 = 0.

In the second case, it holds
(
D+ + D−) (c+χm−1 + c−χ−m+1)

=
1
2

√
3(2m − 1)(m − 1) (c+χm−3 + c−χm+3)

that implies one of three possibilities

1. m = 1, j = 0;
2. m − 3 = −m + 1;
3. m − 3 = 0, c+ + c− = 0.

Thus, one gets the following eigenvectors:

1. (D+ + D−) χ0 = 0, m = 1;
2. (D+ + D−) (χ1 + χ−1) = 3

2 (χ1 + χ−1) , m = 2;
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3. (D+ + D−) (χ1 − χ−1) = − 3
2 (χ1 − χ−1) , m = 2;

4. (D+ + D−) (χ2 − χ−2) = 0, m = 3.

Now one has

D2
1 = D+ + D− +

1
2

(
F 2

11 − C̃
)

, D2
2 = −D+ − D− +

1
2

(
F 2

11 − C̃
)

,

{D1,D2} = 2i
(
D+ − D−) , C̃

∣
∣
∣
ṼB1 (mε1)

= m(m + 1) id .

Relations (8.10) are valid also in the case k = 1 that leads to the following
proposition.

Proposition 8.4. There are eight common eigenvectors in VB1(mε1) for the
operators D2

0,D
2
1,D

2
2:

1. D2
0χ0 = D2

1χ0 = D2
2χ0 = 1

2{D1,D2}χ0 = 0, m = 0;
2. D2

0χ0 = 1
2{D1,D2}χ0 = 0, D2

1χ0 = D2
2χ0 = −χ0, m = 1;

3. D2
0(χ1 + χ−1) = D2

2(χ1 + χ−1) = −(χ1 + χ−1), D2
1(χ1 + χ−1) = 0,

1
2{D1,D2}(χ1 + χ−1) = i

2 (χ1 − χ−1), m = 1;
4. D2

0(χ1 − χ−1) = D2
1(χ1 − χ−1) = −(χ1 − χ−1), D2

2(χ1 − χ−1) = 0,
1
2{D1,D2}(χ1 − χ−1) = − i

2 (χ1 + χ−1), m = 1;
5. D2

0(χ2 − χ−2) = −4(χ2 − χ−2),
D2

1(χ2 − χ−2) = D2
2(χ2 − χ−2) = −(χ2 − χ−2),

1
2{D1,D2}(χ2 − χ−2) = −

√
6iχ0, m = 2;

6. D2
0(χ1 + χ−1) = D2

1(χ1 + χ−1) = −(χ1 + χ−1),
D2

2(χ1 + χ−1) = −4(χ1 + χ−1),
1
2{D1,D2}(χ1 + χ−1) = 3

2 i(χ1 − χ−1), m = 2;
7. D2

0(χ1 − χ−1) = D2
2(χ1 − χ−1) = −(χ1 − χ−1),

D2
1(χ1 − χ−1) = −4(χ1 − χ−1),

1
2{D1,D2}(χ1 − χ−1) = − 3

2 i(χ1 + χ−1), m = 2;
8. D2

0(χ2 − χ−2) = D2
1(χ2 − χ−2) = D2

2(χ2 − χ−2) = −4(χ2 − χ−2),
1
2{D1,D2}(χ2 − χ−2) = −

√
30iχ0, m = 3.

Only the first and the second vectors are also eigenvectors for the operator
1
2{D1,D2}.

Multiplicities of corresponding eigenvalues in L2 (SO(3), dµ) are 2m + 1.

8.2.2 The Case n = 2k − 1

Here we use notations from appendix C.2. The algebra Dk is considered there
as a subalgebra of Bk. Therefore, one can easily obtain analogs for formulas
(8.7) simply by deleting the terms Fk0 and F0k:

D0 = −iFkk, D1 =
1
2

k−1∑

j=1

{F−kj + Fkj , Fk,−j + F−k,−j} ,
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D2 =
1
2

k−1∑

j=1

{F−kj − Fkj , Fk,−j − F−k,−j} ,

D3 = i
k−1∑

j=1

(FkjFk,−j − F−kjF−k,−j) .

Let R,i be the space VDk
(λ) for a highest weight (C.10), where mi ∈

Z+, i � 2,m1 ∈ Z, and ṼDk
(λ) be a subspace of VDk

(λ) annulled by the
subalgebra kC

0
∼= Dk−1. Reasoning as above in the case n = 2k, one gets that

ṼDk
(λ) is nontrivial iff

λ = mkεk + mk−1εk−1, mk � |mk−1|, mk ∈ Z+, mk−1 ∈ Z
′
k, (8.17)

where Z
′
k = Z+ for k � 3 and Z

′
2 = Z. In this case, it holds

dim ṼDk
(λ) = mk − |mk−1| + 1 . (8.18)

Below in the present subsection we suppose that condition (8.17) is valid.
This leads to the expansion

L2 (SO(2k),SO(2k − 2), dµ)

=
⊕

mk � |mk−1|
mk ∈ Z+, mk−1 ∈ Z

′
k

(mk − |mk−1| + 1)VDk
(mkεk + mk−1εk−1)

of the left SO(2k)-space L2 (SO(2k),SO(2k − 2), dµ) and to the expansion

L2 (SO(2k),SO(2k − 2), dµ) (8.19)

=
⊕

mk � |mk−1|
mk ∈ Z+, mk−1 ∈ Z

′
k

(dim VDk
(mkεk + mk−1εk−1)) ṼDk

(mkεk + mk−1εk−1) ,

of the same space as a DiffSO(2k)(SO(2k)/SO(2k − 2))-module, where the
dimension dim VDk

(mkεk + mk−1εk−1) is given by (C.8). Now let

D+ :=
k−1∑

j=1

FkjFk,−j , D− :=
k−1∑

j=1

F−kjF−k,−j ; ,

C̃ := C|L2(SO(2k),SO(2k−2),dµ) = F 2
kk +

k−1∑

j=1

({Fkj , Fjk} + {Fk,−j , F−jk})

be operators from L2 (SO(2k),SO(2k − 2), dµ), where C is the universal
Casimir operator (C.11).

Formulas (8.10) and (8.11) are valid without any modification and formula
(8.12) becomes
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[D+,D−] = −1
2
F 3

kk +
1
2
C̃Fkk + (k − 1)(k − 2)Fkk .

Now

C̃
∣
∣
∣
ṼDk

(λ)
=
(
(mk + k − 1)2 + (mk−1 + k − 2)2 − (k − 1)2 − (k − 2)2

)
id .

From [124] it follows2 that

ṼDk
(λ) = V−νεk

⊕ V−(ν−2)εk
⊕ . . . ⊕ V(ν−2)εk

⊕ Vνεk
, (8.20)

where ν = mk−|mk−1|, all summands are one-dimensional weight spaces w.r.t.
the Cartan subalgebra hk ⊂ Dk and the algebra, generated by the operators
D+,D−, acts in ṼDk

(λ) in an irreducible way.
Again we shall simplify formulas for this action w.r.t. [124] using an-

other base. The next lemma can be proved completely similar to the proof of
Lemma 8.1.

Lemma 8.2. Let ν := mk − |mk−1|, Lν := (−ν,−ν + 2, . . . , ν − 2, ν). There
is a base (χj)j∈Lν

in ṼDk
(λ) such that

Fkkχj = jχj , D+χj =
1
4
(j − mk − |mk−1| − 2k + 4)(j − ν)χj+2,

D−χj =
1
4
(j + mk + |mk−1| + 2k − 4)(j + ν)χj−2,

where χj = 0 if j 
∈ Lν .

Arguing as in the Bk-case one gets the following proposition.

Proposition 8.5. For n = 2k − 1, k � 2, there are four series of common
eigenvectors in ṼDk

(mkεk + |mk−1|εk−1), mk ∈ Z+, mk−1 ∈ Z
′
k for the oper-

ators D2
0,D1,D2:

1. D2
0χ0 = D3χ0 = 0, D1χ0 = D2χ0 = −mk(mk + 2k − 3)χ0, mk = |mk−1|;

2. D2
0(χ1+χ−1) = −(χ1+χ−1), D2(χ1+χ−1) = −mk(mk+2k−3)(χ1+χ−1),

D1(χ1 + χ−1) =
(
−m2

k + (5 − 2k)mk + 2k − 4
)
(χ1 + χ−1),

D3(χ1 + χ−1) = i (mk + k − 2) (χ1 − χ−1), |mk−1| = mk − 1,mk ∈ N

3. D2
0(χ1−χ−1) = −(χ1−χ−1), D1(χ1−χ−1) = −mk(mk+2k−3)(χ1−χ−1),

D2(χ1 − χ−1) =
(
−m2

k + (5 − 2k)mk + 2k − 4
)
(χ1 − χ−1),

D3(χ1 − χ−1) = −i (mk + k − 2) (χ1 + χ−1), |mk−1| = mk − 1,mk ∈ N;
4. D2

0(χ2 − χ−2) = −4(χ2 − χ−2), D3(χ2 − χ−2) = −4i (mk + k − 2) χ0,

D1(χ2−χ−2) = D2(χ2−χ−2) =
(
−m2

k + (5 − 2k)mk + 2k − 4
)
(χ2−χ−2),

|mk−1| = mk − 2,mk = 2, 3, 4, . . .

Only the first vector is also an eigenvector for the operator D3.
2 See also appendix C.4 for a proof independent from [124].
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Multiplicities of corresponding eigenvalues in L2 (SO(n + 1),SO(n − 1), dµ)
are equal to dim VDk

(mkεk + mk−1εk−1) and can be calculated in explicit form
using (C.8).

Remark 8.1. For k = 2 a value of mk−1 = m1 can has an arbitrary sign and
one gets eight common eigenvectors found in [184].

Remark 8.2. Results of Propositions 8.3, 8.4 and 8.5 correspond to Proposi-
tion 8.2 and are even more restrictive. Indeed, if

ψD ∈ L2(SO(n + 1),SO(n − 1), dµ)

is an eigenfunction for operators D2
0,D1,D2 and D3 for n � 3, then D0ψD =

D3ψD = 0, D1ψD = D2ψD. Similarly, if ψD ∈ L2 (SO(3), dµ) is an eigenfunc-
tion for operators D2

0,D
2
1,D

2
2 and {D1,D2}, then D0ψD = {D1,D2}ψD =

0, D2
1ψD = D2

2ψD.

Remark 8.3. Common eigenfunctions in Propositions 8.3, 8.4 and 8.5 cor-
respond to the case Q = Sn. For the projective space Pn(R) one should con-
sider the subspace of the space L2 (SO(n + 1),SO(n − 1), dµ), consisting of
functions, invariant w.r.t. the operator exp(πD0), since it corresponds to the
antipodal transformation on Sn. Evidently, an eigenfunction for the operator
D0 is invariant w.r.t. exp(πD0) iff it corresponds to an eigenvalue of the form
2i�, � ∈ Z. Therefore in the case Q = Pn(R) one should restrict oneself with
cases 1,4 of Propositions 8.3, 8.5 and cases 1,2,5,8 of Proposition 8.4.

8.3 Scalar Spectral Equations and Some Energy Levels
for the Two-Body Problem

For an arbitrary compact two-point homogeneous space one gets from
(5.22)–(5.25) and (8.1) the spectral problem for the eigenfunction ψ = f(r):

− (1 + r2)2

8mR2
f ′′− 1+ r2

8mR2r

(
q1+ q2 + (2 − q2)r2

)
f ′+(V (r)−E)f = 0, 0 < r < ∞,

(8.21)
where multiplicities q1 and q2 are given in Proposition 1.2. In this section, m
denotes reduced mass (5.19) and integers mk correspond to highest weights
in so(n + 1)-modules.

Consider the case Q = Sn. Let D′
i, i = 1, 2, 3 be given as in Proposition 8.2

and D2
0ψD = δ0ψD, D′

iψD = δiψD, i = 1, 2.
In accordance with Remark 8.2 there are two main cases:

1. D′
3ψD = 0, δ0 = 0, δ1 = δ2, particle masses are arbitrary;

2. D′
3ψD 
∼ ψD, particle masses are equal.

In the first case,

(CD′
1 + AD′

2 + 2BD′
3) ψD = δ1(C + A)ψD =

(1 + r2)2

4mR2r2
δ1ψD

and in the second case,
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A =
1 + r2

4mR2r2
, B ≡ 0, C =

1 + r2

4mR2
.

In all cases, the spectral (8.1) has the form

f ′′+
n − 1 + (3 − n)r2

(1 + r2)r
f ′+

8
(1 + r2)2

(
mR2(E − V (r)) − a

r2
− b − cr2

)
f = 0,

a, b, c � 0, 0 < r < ∞. (8.22)

where coefficients a, b, c are described below.
For eigenfunctions ψD classified in Proposition 8.3 (n = 2k, k = 2, 3, . . .)

one has

1. a = c = mk(mk + 2k − 2)/8, b = 2a, mk ∈ Z+, masses are arbitrary;
2. a = mk(mk + 2k − 2)/8, b = (m2

k + (2k − 3)mk − k + 2)/4,
c = (m2

k + 2(k − 2)mk − 2k + 3)/8, mk ∈ N, masses are equal;
3. a = (m2

k + 2(k − 2)mk − 2k + 3)/8, b = (m2
k + (2k − 3)mk − k + 2)/4,

c = mk(mk + 2k − 2)/8, mk ∈ N, masses are equal;
4. a = c = (m2

k + 2(k − 2)mk − 2k + 3)/8,
b = (m2

k + 2(k − 2)mk − 2k + 5)/4, mk = 2, 3, . . ., masses are equal.

Proposition 8.4 (n = 2) gives the following values for a, b, c:

1. a = c = b = 0, masses are arbitrary;
2. a = c = 1/8, b = 1/4, masses are arbitrary;
3. a = 1/8, b = 1/4, c = 0, masses are equal;
4. a = 0, b = 1/4, c = 1/8, masses are equal;
5. a = c = 1/8, b = 3/4, masses are equal;
6. a = 1/2, b = 3/4, c = 1/8, masses are equal;
7. a = 1/8, b = 3/4, c = 1/2, masses are equal;
8. a = c = 1/2, b = 3/2, masses are equal.

Finally, Proposition 8.5 corresponds to the following cases (n = 2k−1, k =
2, 3, . . .):

1. a = c = mk(mk + 2k − 3)/8, b = 2a, mk ∈ Z+, masses are arbitrary;

2. a = mk(mk + 2k − 3)/8, b = (m2
k + (2k − 4)mk − k +

5
2
)/4,

c = (m2
k + (2k − 5)mk − 2k + 4)/8, mk ∈ N, masses are equal;

3. a = (m2
k + (2k − 5)mk − 2k + 4)/8, b = (m2

k + (2k − 4)mk − k +
5
2
)/4,

c = mk(mk + 2k − 3)/8, mk ∈ N, masses are equal;
4. a = c = (m2

k + (2k − 5)mk − 2k + 4)/8,
b = (m2

k + (2k − 5)mk − 2k + 6)/4, mk = 2, 3, . . ., masses are equal.

One can write (8.21) and (8.22) in the general form:

f ′′+
q1+q2+(2 − q2)r2

(1+r2)r
f ′+

8
(1+r2)2

(
mR2(E − V (r)) − a

r2
− b − cr2

)
f = 0,

a, b, c � 0, 0 < r < ∞ . (8.23)

We shall consider (8.23) for the Coulomb and oscillator potentials.
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8.3.1 Coulomb Potential

For the Coulomb potential,

Vc =
γ

2R

(
r − 1

r

)
, γ > 0 (8.24)

Theorems 2.11 and 5.1 imply the self-adjointness of the two-body Hamil-
tonian3 with its domain defined by (2.28), where V1 = 0 for 0 < r < 1 and
V1 = Vc for 1 � r < ∞.

Equation (8.23) for V = Vc is the Fuchsian differential equation with four
singular points r = 0,±i,∞ and corresponding characteristic exponents:

ρ
(0)
± =

1
2

(
1 − q1 − q2 ±

√
(q1 + q2 − 1)2 + 32a

)
,

ρ
(∞)
± =

1
2

(
1 − q2 ±

√
(q2 − 1)2 + 32c

)
, (8.25)

ρ
(i)
± =

1
2



1
2
q1 + q2 ±

√(
1
2
q1 + q2

)2

+ 8 (mER2 − imRγ + a − b + c)



 ,

ρ
(−i)
± =

1
2



1
2
q1 + q2 ±

√(
1
2
q1 + q2

)2

+ 8 (mER2 + imRγ + a − b + c)



 .

The same arguments as for the one-body Coulomb problem in Sect. 6.3
show that the function f(r), r ∈ (0,∞) should be ∼ rρ

(0)
+ as r → +0. Consider

its asymptotics as r → +∞. Let the function ψD be as in (8.1). Due to
Theorem 5.1 the measure dν on the interval (0,+∞) � r is

rq1+q2dr

(1 + r2)1+
1
2 q1+q2

∼ dr

rq2+2
, r → +∞ .

Let ζ = 1/r be the local coordinate near the point r = +∞, then dν ∼ ζq2dζ
as ζ → 0 and the asymptotic ∼ ζ1−q2 corresponds to a solution of the equation

�ϕ = const ·δ(ζ), const 
= 0 .

From ρ
(∞)
− � 1 − q2 it follows that if f(r) ∼ r−ρ

(∞)
− as r → +∞, then the

function H(f(r)ψD) is not in L2(Q × Q, dµ2), where µ2 is the measure on
Q × Q, corresponding to metric (5.1). Thus, it should be f(r) ∼ r−ρ

(∞)
+ as

r → +∞ (note that ρ
(∞)
+ � 0).

Consider the problem of reducing of (8.23) with potential (8.24) to the
hypergeometric equation via reducing (8.23) to the Heun equation by trans-
formations (B.3), (B.4) and then using Theorem B.1.

Singular points of (8.23) form a harmonic quadruple (see appendix B).
Therefore, one can use only the first case of Theorem B.1. Move singular points
3 It is the Schrödinger operator on the space M = Q × Q w.r.t. metric (5.1).
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(0,±i,∞) of equation (8.23) to the quadruple (0, 1, 2,∞) by a fractional linear
transformation t = µ(r) of independent variable.

Since the order of singular points on a circle or on a line is conserved
by such transformation, only two possibilities can occur. The first one corre-
sponds to the map of the unordered pair (±i) into the unordered pair (0, 2).
The second one corresponds to the map of the unordered pair (0,∞) into the
unordered pair (0, 2).

Then, one can reduce the transformed equation to the Heun one by a
substitution of the form (B.4). One of requirements of the first case of The-
orem B.1 is the equality of characteristic exponents at points 0 and 2. In
terms of characteristic exponents (8.25) it means that either |ρ(i)

+ − ρ
(i)
− | =

|ρ(−i)
+ − ρ

(−i)
− | or |ρ(0)

+ − ρ
(0)
− | = |ρ(∞)

+ − ρ
(∞)
− |. The first possibility can not oc-

cur for a nontrivial γ. Therefore, without loss of generality, one can consider
the map

t = µ(r) :=
2r

r + i
, µ : (−i, 0, i,∞) → (∞, 0, 1, 2) .

This map transforms (8.23) with potential (8.24) into the equation

ftt(t) + A(t)ft(t) − B(t)f(t) = 0, |t − 1| = 1, Im t < 0, (8.26)

where

A(t) =
(q1 + 2q2 + 2)t2 − 4(q1 + q2 + 1)t + 4(q1 + q2)

2t(t − 1)(t − 2)
,

B(t)

= 2
m
(
ER2t2(t−2)2+Rγit(t−2)(t2 − 2t + 2)

)
+ a(t − 2)4 − bt2(t − 2)2 + ct4

t2(t − 1)2(t − 2)2
.

The substitution

f(t) = tρ
(0)
+ (t − 1)ρ

(i)
+ (t − 2)ρ

(∞)
+ w(t)

transforms (8.26) into Heun equation (B.14) with the parameter γ′ instead of
γ, where

α = ρ
(0)
+ + ρ

(i)
+ + ρ

(∞)
+ + ρ

(−i)
+ , β = ρ

(0)
+ + ρ

(i)
+ + ρ

(∞)
+ + ρ

(−i)
− , d = 2,

γ′ = 1 − ρ
(0)
− + ρ

(0)
+ , δ = 1 − ρ

(i)
− + ρ

(i)
+ , ε = 1 − ρ

(∞)
− + ρ

(∞)
+ .

Here, tρ
(0)
+ (t− 1)ρ

(i)
+ (t− 2)ρ

(∞)
+ means the function holomorphic on C\(−∞, 2]

and real for real t > 2. Restrictions on asymptotics of the function f near the
points r = 0,∞ are equivalent to the boundedness of the function w(t) near
the points t = 0, 2.

Obviously, the accessory parameter q can be found as
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q = −2 lim
t→0

t

(

−B(t) +

(
ρ
(0)
+

t
+

ρ
(i)
+

t − 1
+

ρ
(∞)
+

t − 2

)

A(t)+
ρ
(0)
+ (ρ(0)

+ − 1)
t2

+
2ρ

(0)
+ ρ

(i)
+

t(t − 1)

+
2ρ

(0)
+ ρ

(∞)
+

t(t − 2)

)

=4ρ
(0)
+ ρ

(i)
++2ρ

(0)
+ ρ

(∞)
+ −(q1 + q2 − 2)ρ(0)

+ +(q1 + q2)(2ρ
(i)
+ +ρ

(∞)
+ )

− 4mRγi + 16a . (8.27)

Theorem B.1 implies that this Heun equation can be transformed into
the hypergeometric equation by a rational change of independent variable
t → z : z = P (t), where P is a rational function, iff

γ′ = ε, (8.28)
αβ − q = 0 . (8.29)

Equation (8.28) can be rewritten as

(q1 + q2 − 1)2 + 32a = (q2 − 1)2 + 32c

or as
16(c − a) = q1(

1
2
q1 + q2 − 1) . (8.30)

Using the equalities

α = ρ
(0)
+ + ρ

(i)
+ + ρ

(∞)
+

+
1
2



1
2
q1 + q2 +

√(
1
2
q1 + q2

)2

+ 8 (mER2 + imRγ + a − b + c)



 ,

β = ρ
(0)
+ + ρ

(i)
+ + ρ

(∞)
+

+
1
2



1
2
q1 + q2 −

√(
1
2
q1 + q2

)2

+ 8 (mER2 + imRγ + a − b + c)



 ,

one can rewrite (8.29) as

(
ρ
(0)
+ + ρ

(i)
+ + ρ

(∞)
+ +

1
2
(
1
2
q1 + q2)

)2

−1
4

(
(
1
2
q1 + q2)2 + 8

(
mER2 + imRγ + a − b + c

)
)

−4ρ
(0)
+ ρ

(i)
+ − 2ρ

(0)
+ ρ

(∞)
+ + (q1 + q2 − 2)ρ(0)

+ (8.31)

−(q1 + q2)(2ρ
(i)
+ + ρ

(∞)
+ ) + 4mRγi − 16a

=
(
ρ
(0)
+

)2

+
(
ρ
(i)
+

)2

+
(
ρ
(∞)
+

)2

+ 2ρ
(i)
+

(
ρ
(∞)
+ − ρ

(0)
+

)
+
(

3
2
q1 + 2q2 − 2

)
ρ
(0)
+

−
(

3
2
q1 + q2

)
ρ
(i)
+ − 1

2
q1ρ

(∞)
+ + 2mRγi − 2mER2 − 18a + 2b − 2c = 0 .
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Excluding squares of values ρ
(0)
+ , ρ

(i)
+ , ρ

(∞)
+ from (8.32) with the help of

obvious equations
(
ρ
(0)
+

)2

+ (q1 + q2 − 1)ρ(0)
+ − 8a = 0,

(
ρ
(i)
+

)2

− (
1
2
q1 + q2)ρ

(i)
+ − 2mR (RE − γi) − 2(a − b + c) = 0,

(
ρ
(∞)
+

)2

+ (q2 − 1)ρ(∞)
+ − 8c = 0

for characteristic exponents, one gets
(

2ρ
(i)
+ − 1

2
q1 − q2 + 1

)(
ρ
(∞)
+ − ρ

(0)
+

)
− q1ρ

(i)
+ + 8(c − a) = 0 . (8.32)

It follows from (8.28) that ρ
(∞)
+ − ρ

(0)
+ = 1

2q1 and then (8.32) leads to

1
2
q1

(
1 − q2 −

1
2
q1

)
+ 8(c − a) = 0

modulo (8.28), which is equivalent to (8.30) and thus to (8.28) itself.
Hence we came to the conclusion that (8.29) is a consequence of (8.28).

The condition (8.28) is valid, particularly, in the case q1 = 0, a = c, when
ρ
(0)
± = ρ

(∞)
± . This case corresponds to the real spheres Sn with q2 = n − 1,

i.e., to cases 1,4 of Propositions 8.3, 8.5 and cases 1,2,5,8 of Proposition 8.4.4

From now till the end of the present section we suppose that condition
(8.28) is valid.

The fist case of Theorem B.1 implies then that the function w w.r.t. a new
independent variable5

z := 1 − (t − 1)2 = t(2 − t) (8.33)

satisfies the hypergeometric equation:

z(1 − z)w′′(z) + (γ̃ − (α̃ + β̃ + 1)z)w′(z) − α̃β̃w(z) = 0 (8.34)

with the P -symbol

P






0 1 ∞
0 0 α̃ ; z

1 − γ̃ γ̃ − α̃ − β̃ β̃





.

The correspondence between characteristic exponents of the Heun and the
hypergeometric equations connected by (8.33) implies

α̃ =
1
2
α, β̃ =

1
2
β, γ̃ = γ′ .

4 The projective spaces Pn(R) are beyond the problem under consideration since
potential (8.24) is not projectible from Sn onto Pn(R) ∼= Sn/ Z2

5 The variable z corresponds to the variable z in (6.46).
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Since

z − 1 = −
(

r − i

r + i

)2

,

the half-line [0,∞] on the r-plane is mapped into the circle on the z-plane
defined by the equation |z − 1| = 1, while the values r = 0,∞ correspond to
the point z = 0. Therefore, the situation is the same as for the one-particle
Coulomb problem in Sect. 6.3.2 up to notations.6

Indeed, it holds

γ̃ = 1 +
√

(q2 − 1)2 + 32a ∈ R, 1 − γ̃ � 0,

α̃ =
1
2

+
1
2

√
(q2 − 1)2 + 32a +

1
4
(s + s̄) ∈ R,

β̃ =
1
2

+
1
2

√
(q2 − 1)2 + 32a +

1
4
(−s + s̄) /∈ R,

where s :=
√(

1
2q1 + q2

)2 + 8 (mER2 + imRγ + 2a − b).
Thus, similar to the Coulomb problem in Sect. 6.3.2 one comes to one of

the following two equalities α̃ = −k + 1, k ∈ N or γ̃ − α̃ = −k + 1, k ∈ N.
Without loss of generality suppose that Re s < 0. Then the second equality is
impossible and the first equality yields

s = 1 − 2k −
√

(q2 − 1)2 + 32a +
4imRγ

1 − 2k −
√

(q2 − 1)2 + 32a

and finally, due to the definition of s, one gets

Ek =
1

8mR2

(
2(2k − 1)

√
(q2 − 1)2 + 32a + 4k2 − 4k + 2 − 1

2
q1q2

−1
2
q1 − 2q2 + 16a + 8b

)
− 2mγ2

(√
(q2 − 1)2 + 32a + 2k − 1

)2 , k ∈ N .

Particularly, for the real spheres Sn in the case q1 = 0, q2 = n − 1, a = c,
which corresponds to cases 1,4 of Propositions 8.3, 8.5 and cases 1,2,5,8 of
Proposition 8.4, one gets

Ek =
1

mR2

(
1
2
(k2 − k + 1) − n

4
+ 2a + b +

2k − 1
4

√
(n − 2)2 + 32a

)

− 2mγ2

(√
(n − 2)2 + 32a + 2k − 1

)2 , k ∈ N .

Taking into account all transformations used while reducing (8.23) to the
hypergeometric equation, we get the following expression for the correspond-
ing radial eigenfunctions (up to an arbitrary constant nonzero factor)

fk(r) =
rρ

(0)
+ (r − i)ρ

(i)
+

(r + i)ρ
(0)
+ +ρ

(i)
+ +ρ

(∞)
+

k−1∑

j=0

(−1)j

j!(k − j − 1)!
(β̃)j

(γ̃)j

(4ri)j

(r + i)2j
,

where ρ
(0)
+ , ρ

(i)
+ , ρ

(∞)
+ , β̃ and γ̃ are given by above formulas for E = Ek.

6 Particularly α̃ instead of α and β̃ instead of β.
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8.3.2 Oscillator Potential

For the oscillator potential

Vo =
2R2ω2r2

(1 − r2)2

define the self-adjoint two-body Hamiltonian according to Theorem 2.12,
where the space M ′ ⊂ M = Q × Q is defined by the inequality ρ2 < 1

2πR (or
equivalently by r = tan ρ

2R < 1) and ρ2 is the distance between particles. The
domain for this operator is given by (2.32).

Equation (8.23) for this potential is a Fuchsian one with six singular points
0,±1,±i,∞ and corresponding characteristic exponents:

ρ
(0)
± =

1
2

(
1 − q1 − q2 ±

√
(q1 + q2 − 1)2 + 32a

)
,

ρ
(∞)
± =

1
2

(
1 − q2 ±

√
(q2 − 1)2 + 32c

)
,

ρ
(i)
± = ρ

(−i)
±

=
1
4
q1 +

1
2
q2 ±

1
2

√(
1
2
q1 + q2

)2

+ 8mER2 + 4mR4ω2 + 8(a − b + c),

ρ
(1)
± = ρ

(−1)
± =

1
2

(
1 ±

√
1 + 4R4mω2

)
.

Similarly to the previous section the function f(r), r ∈ (0, 1) should be
∼ rρ

(0)
+ as r → +0 and arguments for the one-body oscillator problem from

Sect. 6.3.2 imply f ∼ rρ
(1)
+ as r → 1 − 0.

Fortunately, one can glue points r = ±1 together (as well as points r = ±i)
by the change of the independent variable r → ζ, ζ = r2, which transforms
the differential equation under consideration into the following Fuchsian dif-
ferential equation with four singular points:

fζζ +
1 + q1 + q2 + (3 − q2)ζ

2ζ(ζ + 1)
fζ +

2
ζ(ζ + 1)2

(8.35)
×
(

mR2

(
E − 2R2ω2ζ

(ζ − 1)2

)
− a

ζ
− b − cζ

)
f = 0 .

The singular points −1, 0, 1,∞ of this equation form a harmonic quadruple
and correspond, respectively, to the following characteristic exponents:

ρ
(i)
± ,

1
2
ρ
(0)
± , ρ

(1)
± ,

1
2
ρ
(∞)
± .

The same arguments as for the Coulomb problem leads to the conclusion that
the only possibility to transform (8.35) to the hypergeometric equation via
transformations (B.3), (B.4) and then using Theorem B.1 corresponds to the
map of the unordered pair (0,∞) into the unordered pair (0, 2) by a Möbius
transformation.
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Without loss of generality, one can consider the substitution

t = µ(ζ) =
2ζ

ζ + 1
, µ : (−1, 0, 1,∞) → (∞, 0, 1, 2) . (8.36)

The interval under consideration for the variable t is again (0, 1). Substitution
(8.36) transforms (8.35) into (8.26) with

A(t) =
(q1 + 2q2 + 2)t − 2(q1 + q2 + 1)

2t(t − 2)
,

B(t) =
2

t(t − 2)

(
mR2

(
E +

R2ω2t(t − 2)
2(t − 1)2

)
− 2a

t
+ a − b +

ct

t − 2

)
.

Define a function w(t) by

w(t) = t−
1
2 ρ

(0)
+ (t − 1)−ρ

(1)
+ (t − 2)−

1
2 ρ

(∞)
+ f(t) .

It satisfies Heun equation (B.14), where

α =
1
2
ρ
(0)
+ + ρ

(1)
+ +

1
2
ρ
(∞)
+ + ρ

(i)
+ , β =

1
2
ρ
(0)
+ + ρ

(1)
+ +

1
2
ρ
(∞)
+ + ρ

(i)
− , d = 2,

γ = 1 +
1
2

(
ρ
(0)
+ − ρ

(0)
−

)
, δ = 1 + ρ

(1)
+ − ρ

(1)
− , ε = 1 +

1
2

(
ρ
(∞)
+ − ρ

(∞)
−

)
.

Here the expression t−
1
2 ρ

(0)
+ (t−1)−ρ

(1)
+ (t−2)−

1
2 ρ

(∞)
+ denotes the function holo-

morphic on the domain C\ ((−∞, 0] ∪ [1,+∞)) and real for real t ∈ (0, 1).
Restrictions on asymptotics of the function f(r) near the points r = 0, 1 are
equivalent to the boundedness of the function w(t) near the points t = 0, 1.

Calculation, similar to (8.27), yields the following value of accessory para-
meter q for (B.14)

q = −2mR2E + 2b + (q1 + q2 + 1)
(

ρ
(1)
+ +

1
4
ρ
(∞)
+

)

+2ρ
(0)
+ ρ

(1)
+ +

1
2
ρ
(0)
+ ρ

(∞)
+ +

1
4
(q2 + 1)ρ(0)

+ .

Condition (8.28) of Theorem B.1 is again equivalent to (8.30). Condition (8.29)
of the same Theorem can be written as

αβ − q = ρ
(1)
+

(
ρ
(∞)
+ − ρ

(0)
+ − 1

2
q1

)
= 0 ,

which is again a consequence of (8.28).
Suppose till the end of this section that condition (8.28) is valid. Thus, we

are in the situation of the first case of Theorem B.1 and, changing the inde-
pendent variable t by a new one z according to (8.33), one gets hypergeometric
equation (8.34) with
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α̃ =
1
2
α =

1
4

(
2 +

√
(q2 − 1)2 + 32a +

√
1 + 4R4mω2 + s

)
,

β̃ =
1
2
β =

1
4

(
2 +

√
(q2 − 1)2 + 32a +

√
1 + 4R4mω2 − s

)
,

γ̃ = γ = 1 +
1
2

√
(q2 − 1)2 + 32a,

where s =
√

( 1
2q1 + q2)2 + 8mER2 + 4mR4ω2 + 16a − 8b. The interval (0, 1)

� t corresponds to the interval (0, 1) � z, therefore the requirement on
asymptotic of the function f(t) near the point t = 0 implies

w(z) = F (α̃, β̃; γ̃; z) .

Also, due to

γ̃ − α̃ − β̃ = −1
2

√
1 + 4R4mω2 < 0, Re α̃ > 0

and (B.10), the requirement on asymptotic of the function f(t) near the point
t = 1 implies

β̃ = −k, k = 0, 1, 2, . . .

This leads to the energy levels

Ek =
1

8mR2

((
4k + 2 +

√
(q2 − 1)2 + 32a

)2

−1
2
q1q2 − q2

2 − 1
2
q1 − 16a + 8b + 1

)

+
ω

2
√

m

(
4k + 2 +

√
(q2 − 1)2 + 32a

)√

1 +
1

4R4m2
, k = 0, 1, 2, . . .

Particularly, for the real spheres Sn and projective spaces Pn(R) in the case
q1 = 0, q2 = n − 1, a = c, which corresponds to cases 1,4 of Propositions 8.3,
8.5 and cases 1,2,5,8 of Proposition 8.4, one gets

Ek =
1

8mR2

((
4k + 2 +

√
(n − 2)2 + 32a

)2

− (n − 1)2 − 16a + 8b + 1
)

+
ω

2
√

m

(
4k + 2 +

√
(n − 2)2 + 32a

)√

1 +
1

4R4m2
, k = 0, 1, 2, . . .

The expression for the corresponding radial eigenfunctions (up to an arbitrary
constant nonzero factor) is

fk(r) =
rρ

(0)
+ (r2 − 1)ρ

(1)
+

(r2 + 1)
1
2 ρ

(0)
+ +ρ

(1)
+ + 1

2 ρ
(∞)
+

k∑

j=0

(−1)j

j!(k − j)!
(α̃)j

(γ̃)j

4jr2j

(r2 + 1)2j
,

where ρ
(0)
+ , ρ

(1)
+ , ρ

(∞)
+ , α̃ and γ̃ are given by above formulas for E = Ek.



216 8 Quasi-Exactly Solvability of the Quantum Mechanical

8.4 The Problem of the Discrete Spectrum
on Noncompact Spaces

The approach of this chapter to the calculation of some energy series for
the two-body problem on compact two-point homogeneous spaces can not
be applied for noncompact two-point homogeneous spaces, since there are no
finite-dimensional unitary representations of noncompact Lie groups.

Conjecture 8.1. There are no discrete spectrum for the two-body Hamil-
tonian with a central potentials in noncompact two-point homogeneous spaces.

As an indirect evidence, we recall that in Euclidean space, the two-body
Hamiltonian with a central potentials has no discrete spectrum unless the
part corresponding to the center of mass motion is separated. This fact is not
stressed in quantum mechanical textbooks. Indeed, the two-body Hamiltonian
in Euclidean space En can be expressed in the following form [99]:

Ĥ = Ĥr + Ĥc, Ĥr = − 1
2m

�r +U, Ĥc = − 1
2m

�c,

where �r and �c are the Laplacians respectively corresponding to the rel-
ative motion of the particles and the center of mass motion. Decomposing
the space of states into the tensor product H = Hr ⊗ Hc and applying the
spectral theorem [144] to the commutative operators: Ĥr on the space Hr

and Ĥc on the space Hc, one sees that these operators are unitary equiv-
alent to the respective multiplications by a measurable real-valued function
fr on the space L2 (Mr, dµr) and by a measurable real-valued function fc on
L2 (Mc, dµc), where µr(Mr) < ∞, µc(Mc) < ∞. Therefore, the operator Ĥ is
unitary equivalent to the operator of multiplication by the function fr + fc

acting in the space L2 (Mr × Mc, dµr × dµc).
Eigenvalues of multiplication operators can be described as follows. Let M

be a measurable set with a measure µ such that µ(M) < ∞, f be a measurable
complex-valued function on M and Hf be the multiplication operator:

Hfψ = fψ, where ψ ∈ Dom(Hf ) :=
(

ϕ ∈ L2 (M,dµ)
∣
∣
∫

M

|fϕ|2dµ < ∞
)

.

A complex number λ is an eigenvalue for Hf iff µ
(
f−1(λ)

)
> 0. The corre-

sponding eigenfunction is the characteristic function of the set f−1(λ) up to
a nonzero multiplicative constant.

Since the spectrum of the operator Ĥc (corresponding to a free motion) is
purely continuous, it holds µc

(
f−1

c (λ)
)

= 0 for any λ ∈ C. One should prove
that

(µr × µc) (Σλ) = 0, ∀λ ∈ C,

where Σλ : = ((x, y) ∈ Mr × Mc | fr(x) + fc(y) = λ) .

Let χλ be the characteristic function of the set Σλ. Since the measures of
Mr and Mc are finite, the Fubini theorem [144] applied to χλ implies
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(µr × µc) (Σλ) =
∫

Mr×Mc

χλ dµr(x) × dµc(y) =
∫

Mr

∫

Mc

χλdµc(y) dµr(x)

=
∫

Mr

µc(f−1
c (λ − fr(x)))dµr(x) =

∫

Mr

0 · dµr(x) = 0 .

Thus, the operator Ĥ has no eigenvalues. It is therefore natural to expect
that the two-body Hamiltonian on noncompact two-point homogeneous spaces
with nonseparable variables also has no eigenvalues.



A

Calculations of Commutator Relations
for Algebras of Invariant Differential Operator

In this appendix we shall illustrate main ideas of calculating commutator
relations in Chap. 3. We shall obtain here some relations requiring minimal
calculations.

It is not difficult to verify the following equalities for elements A,B,C of
an arbitrary associative algebra:

[A, {B,C}] = {[A,B], C} + {B, [A,C]}, (A.1)

{{A,B}, C} − {A, {B,C}} = [B, [A,C]], (A.2)

{{A,B}, C} = 2{B,C}A + {[A,B], C} + {[A,C], B} + [B, [A,C]] . (A.3)

Let start from commutator relations (3.15) from Sect. 3.2.2. Let operators
D0, . . . , D10 are defined as in Sect. 3.2.1. First let us consider the commuta-
tor [D1,D4]. When C = B, from (A.1) one has [A,B2] = {[A,B], B}. This
implies:

[D1,D4] = {[D1,Υ12],Υ12} + {[D1,Ω12],Ω12} + {[D1,Θ12],Θ12} .

Using (1.12) and (A.1) again, one gets

[D1,Υ12] = �1, [D1,Ω12] = �2, [D1,Θ12] = �3 .

Thus
[D1,D4] = {�1,Υ12} + {�2,Ω12} + {�3,Θ12} = 2D7 . (A.4)

Using the permutation of coordinates z1 and z2 (or equivalently the auto-
morphism σ ◦ ζπ, see Sect. 3.2.1), we obtain from (A.4):

[D2,D4] = −2D7 .

Suppose now that we already know the expressions for commutators

[D0,D1], [D0,D3], [D0,D7], [D1,D2], [D1,D4], [D1,D5], [D1,D6], [D1,D7],
[D1,D8], [D2,D6], [D3,D4], [D3,D6], [D4,D5], [D4,D6], [D4,D8]

from (3.15).
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Then from the Jacobi identity and (A.1) one has

0 = [D1, [D8,D4]] + [D4, [D1,D8]] + [D8, [D4,D1]]

= [D1,
1
2
{D2 − D1,D6} + {D0,D7}]

+ [D4, n(n − 1)D6 −
1
2
{D3,D5} +

3
4
D3 −

1
2
{D1,D6}] − 2[D8,D7]

=
1
2
{[D1,D2],D6} −

1
2
{D1 − D2, [D1,D6]}

+ {[D1,D0],D7} + {D0, [D1,D7]} + n(n − 1)[D4,D6]

− 1
2
{[D4,D3],D5} −

1
2
{D3, [D4,D5]} +

3
4
[D4,D3]

− 1
2
{D1, [D4,D6]} −

1
2
{[D4,D1],D6} − 2[D8,D7] = −1

2
{{D3,D0},D6}

− {D4,D6} +
1
2
{D2 − D1,D8} + {D3,D7} + {D0, n(n − 1)D4

− 1
2
{D3,D6} −

1
2
{D1,D4} +

3
8
(D1 − D2) + D9 + D10}

− n(n − 1){D0,D4} +
3
2
n(n − 1)D0 + {D3, {D6,D0}}

+
1
2
{D1, {D0,D4}} −

3
4
{D1,D0} + {D7,D6}

− 2[D8,D7] =
1
2
{D2 − D1,D8} + {D3,D7} +

3
8
{D0,D1 − D2}

+ {D0,D9 + D10} +
3
2
n(n − 1)D0 −

3
4
{D0,D1} − 2[D8,D7] .

In the last equality we took into account the formulas

{{D6,D0},D3} − {D6, {D0,D3}} + {{D0,D6},D3}
− {D0, {D6,D3}} = [D0, [D6,D3]] + [D6, [D0,D3]]

= −[D0,D7] −
1
2
[D6,D2 − D1] = D8 +

1
2
(−D8 − D8) = 0,

{{D0,D4},D1} − {D0, {D4,D1}} = [D4, [D0,D1]] = [D4,D3] = 0,

which are consequences of (A.2).
Thus, one gets:

[D7,D8] =
1
4
{D1 − D2,D8} −

1
2
{D3,D7}

+
3
16

{D0,D1 + D2} −
1
2
{D0,D9 + D10}

− 3
4
n(n − 1)D0 .

Now let us demonstrate the calculation modulo (U(g)k0)K0 . Let D0, . . . , D3

be generators of Diff(Sn
S), n � 3 and g = so(n + 1), k0 = so(n − 1), K0 =

SO(n − 1). Then from (A.1) we obtain:
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[D1,D3] = −8
n+1∑

k,l=3

({{Ψ1k, [Ψ1k,Ψ1l]},Ψ2l} + {Ψ1l, {Ψ1k, [Ψ1k,Ψ2l]}})

= 4
n+1∑

k,l=3

({{Ψ1k,Ψkl},Ψ2l} + δkl{Ψ1l, {Ψ1k,Ψ12}})

= 4
n+1∑

k,l=3
k �=l

{{Ψkl,Ψ1k},Ψ2l} + 4
n+1∑

k=3

{Ψ1k, {Ψ1k,Ψ12}} . (A.5)

From formula (A.3) and commutator relations (1.12) one gets:

n+1∑

k,l=3
k �=l

{{Ψkl,Ψ1k},Ψ2l} =
n+1∑

k,l=3
k �=l

(2{Ψ1k,Ψ2l}Ψkl

+ {[Ψkl,Ψ1k],Ψ2l} + {[Ψkl,Ψ2l],Ψ1k} + [Ψ1k, [Ψkl,Ψ2l]])

≡
n+1∑

k,l=3
k �=l

(
−1

2
{Ψ1l,Ψ2l} +

1
2
{Ψ2k,Ψ1k} +

1
2
[Ψ1k,Ψ2k]

)
mod (U(g)k0)

K0

= −1
4

n+1∑

k,l=3
k �=l

Ψ12 = − (n − 1)(n − 2)
4

Ψ12 =
(n − 1)(n − 2)

8
D0 .

Formula (A.2) gives:

n+1∑

k=3

{Ψ1k, {Ψ1k,Ψ12}} =
n+1∑

k=3

({{Ψ1k,Ψ1k},Ψ12}

− [Ψ1k, [Ψ1k,Ψ12]]) = 2

{
n+1∑

k=3

Ψ2
1k,Ψ12

}

− 1
2

n+1∑

k=3

[Ψ1k,Ψ2k]

= −1
4
{D0,D1} +

1
4

n+1∑

k=3

Ψ12 = −1
4
{D0,D1} −

n − 1
8

D0 .

Finally, from (A.5) we obtain:

[D1,D3] = −{D0,D1} −
n − 1

2
D0 +

(n − 1)(n − 2)
2

D0

= −{D0,D1} +
(n − 1)(n − 3)

2
D0 .

Calculations of the commutator [D1,D3] for algebras Diff(Pn(H)S) and
Diff(Pn(C)S) are analogous, but much longer.

Let us demonstrate calculations in octonionic case by one example. Be-
low indices i, j vary from 0 to 7. Suppose that D0, . . . , D9 are generators of
Diff

(
P2(Ca)S

)
and it holds g = f4, k0 = spin(7), K0 = Spin(7) (see Sect. 3.5).

Then from (A.1) and Proposition 3.4 one gets:



222 A Calculations of Commutator Relations

[D1,D3] =
1
2

∑

i,j

({{[eλ,i, eλ,j ], eλ,i}, fλ,j} + {eλ,j , {eλ,i, [eλ,i, , fλ,j ]}})

=
1
8

∑

i
=j

{
{κC2,ēi,ēj

, eλ,i}, fλ,j

}
− 1

4

∑

i

{eλ,i, {eλ,i,Λ}}

− 1
4

∑

i
=j

{
eλ,j , {eλ,i, e2λ,eiēj

}
}

.

Formulas (A.3), (1.44), (1.32) and Proposition 3.4 imply:

1
8

∑

i
=j

{
{κC2,ēi,ēj

, eλ,i}, fλ,j

}

=
1
8

∑

i,j

(
2{eλ,i, fλ,j}κC2,ēi,ēj

+
{
[κC2,ēi,ēj

, eλ,i], fλ,j

}

+
({

[κC2,ēi,ēj
, fλ,j ], eλ,i

}
+
[
eλ,i,

[
κC2,ēi,ēj

, fλ,j

]])

≡
∑

i
=j

(
− 1

16

{
ad Y2

(
κC2,ēi,ēj

∣
∣
Ca2

ēi

)
, fλ,j

}

+
1
16

{
ad Y1

(
κC2,ēi,ēj

∣
∣
Ca1

ej

)
, eλ,i

}
+

1
16

[
eλ,i, ad Y1

(
κC2,ēi,ēj

∣
∣
Ca1

ej

)]

+
1
2
{eλ,i, fλ,j}f2λ,eiēj

)
mod (U(g)k0)K0

=
∑

i
=j

(
−1

4
{ad Y2 (ēj) , fλ,j} −

1
8
{ad Y1 (ei) , eλ,i} −

1
8

[eλ,i, ad Y1 (ei)]

+
1
4
(
{f2λ,eiēj

, {eλ,i, fλ,j}} − [f2λ,eiēj
, {eλ,i, fλ,j}]

)
)

=
∑

i
=j

(
1
2
{eλ,j , fλ,j} −

1
4
{fλ,i, eλ,i} −

1
4
[eλ,i, fλ,i]

)
+ D8

− 1
4

∑

i
=j

({
[f2λ,eiēj

, eλ,i], fλ,j

}
+ {eλ,i, [f2λ,eiēj

, fλ,j ]}
)

= D8 +
∑

i
=j

(
1
4
{eλ,j , fλ,j} +

1
8
Λ +

1
8
{eλ,eiēj ·ei

, fλ,j} −
1
8
{eλ,i, fλ,eiēj ·ej

}
)

= D8 +
∑

i
=j

(
1
4
{eλ,j , fλ,j} −

1
8
{eλ,ej ēiei

, fλ,j} −
1
8
{eλ,i, fλ,i}

)

+ 7Λ = D8 + 7D0 .

Similarly, from (A.2) and Proposition 3.4 one gets:

− 1
4

∑

i

{{Λ, eλ,i}, eλ,i} = −1
4

∑

i

({Λ, {eλ,i, eλ,i}} + [eλ,i, [Λ, eλ,i]])

= −1
2

{

Λ,
∑

i

e2
λ,i

}

+
1
8

∑

i

[eλ,i, fλ,i] = −1
2
{D0,D1} −

1
2
D0 .
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Also, it holds

− 1
4

∑

i
=j

{
{e2λ,eiēj

, eλ,i}, eλ,j

}

= −1
4

∑

i
=j

({
e2λ,eiēj

, {eλ,i, eλ,j}
}

+ [eλ,i, [e2λ,eiēj
, eλ,j ]]

)

= −1
8

∑

i
=j

[eλ,i, fλ,eiēj ·ej
] = −1

8

∑

i
=j

[eλ,i, fλ,i] =
7 · 8
2 · 8Λ =

7
2
D0,

since e2λ,eiēj
is antisymmetric and {eλ,i, eλ,j} is symmetric w.r.t. i, j.

Thus, one concludes that

[D1,D3] = D8 + (7 − 1
2

+
7
2
)D0 −

1
2
{D0,D1} = D8 −

1
2
{D0,D1} + 10D0 .



B

Some Fuchsian Differential Equations

For convenience of references we collected here basic facts concerning some
Fuchsian differential equations: the Riemannian equation and the reducibility
of the Heun equation to the hypergeometric one.

The linear differential equation

w(n)(z) + p1(z)w(n−1)(z) + . . . + pn(z)w(z) = 0 (B.1)

on the Riemannian sphere C = P1(C) with meromorphic coefficients pi(z), i =
1, . . . , n is Fuchsian [46] if for any z0 ∈ C its solutions has no more than a
power growth as z tends to z0 in some cone1, not containing a whole neigh-
borhood of its vertex z0. A point z0 is regular for this differential equation if
all solutions of (B.1) are holomorphic in some neighborhood of z0; otherwise
z0 is a singular point.

It is known [39, 50] that (B.1) is Fuchsian equation iff

pi(z) =
qi(z)

m∏

k=1

(z − zk)i

for some finite potentially singular points z1, . . . , zm ∈ C and polynomials
qi(z) of degrees � i(m−1). One can find characteristic exponents ρ(zk) of (B.1)
at the point zk by substituting the expression w(z) = (z − zk)ρ(zk)

into (B.1)
and keeping only leading terms as z → zk. This procedure gives an algebraic
equation of the nth degree for ρ(zk). Denote by ρ

(zk)
i , i = 1, . . . , n its solutions

for all points zk, k = 1, . . . , m. The substitution w(z) = z−ρ(∞)
similarly

gives characteristic exponents ρ
(∞)
1 , . . . , ρ

(∞)
n at infinity. These characteristic

exponents satisfy the Fuchs identity:

n∑

i=1

m+1∑

k=1

ρ
(zk)
i =

1
2
(m − 1)n(n − 1) ,

where ρ
(zm+1)
i := ρ

(∞)
i .

1 In a neighborhood of the infinite point one should use the local coordinate ζ = 1/z
instead of z − z0.
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One can find characteristic exponents also for a regular point. If a point
z̃ is regular, then characteristic exponents for this point are 0, 1, . . . , n − 1.
The sufficient condition for the regularity of z̃ is the regularity of coefficients
pi(z), i = 1, . . . , n at this point.

An information on singular points and corresponding characteristic expo-
nents of (B.1) can be encoded in the Riemann P -symbol P{A; z}, where the
first row of a matrix A consists of singular points and other rows of A consist
of corresponding characteristic exponents.

Equation (B.1) of the second order with three singular points is called the
Riemannian equation. Coefficients of the Riemann equation are completely
defined by its characteristic exponents. Equivalently, the Riemann equation is
completely defined by its P -symbol. In this case the Fuchs identity looks like

2∑

i=1

3∑

k=1

ρ
(zk)
i = 1

and there are only five independent characteristic values.
If all three singular points z1, z2, z3 are finite, then the Riemannian equa-

tion has the form [50]:

w′′ +
(

A1

z − z1
+

A2

z − z2
+

A3

z − z3

)
w′

+
(

B1

z − z1
+

B2

z − z2
+

B3

z − z3

)
w

(z − z1)(z − z2)(z − z3)
= 0,

(B.2)

where Ak = 1 − ρ
(zk)
1 − ρ

(zk)
2 , Bk = ρ

(zk)
1 ρ

(zk)
2 (zk − zk−1)(zk − zk+1). In the

last equality indices are modulo 3.
There are two types of variable change, transforming any Fuchsian equa-

tion into another Fuchsian equation. The first one is a linear-fractional
(Möbius) transformation of the independent variable:

z → t, z =
αt + β

γt + δ
, αδ − βγ 
= 0 . (B.3)

By such transformation one can move three singular points into three arbitrary
points of C with the same characteristic exponents.

The second one is a linear transformation of the dependent variable

w(z) → w1(z) =
(

z − z1

z − z2

)q

w(z), (B.4)

which conserves singular points, but changes the characteristic exponents

ρ
(z1)
i → ρ

(z1)
i + q, ρ

(z2)
i → ρ

(z2)
i − q, i = 1, 2 .

Using these transformation for the Riemannian equation one can move
three singular points into the triple (0, 1,∞) such that ρ

(0)
1 = ρ

(1)
1 = 0. If one

denote ρ
(∞)
1 = α, ρ

(∞)
2 = β and ρ

(0)
2 = 1 − γ, then the Fuchs identity for this
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equation gives ρ
(1)
2 = γ − α − β that corresponds to the hypergeometric or

Gauss equation:

z(1 − z)w′′(z) + (γ − (α + β + 1)z)w′(z) − αβw(z) = 0 . (B.5)

The P -symbol of (B.5) is

P






0 1 ∞
0 0 α ; z

1 − γ γ − α − β β





.

Many quantum mechanical problems for constant curvature spaces can be
reduced to this equation, while their Euclidean counterparts lead to its limiting
cases, obtained from (B.5) by confluence of singular points (such equations
are not Fuchsian).

We shall consider only solutions of (B.5) in the case γ 
= −m, m ∈ N.
Solutions of (B.1), corresponding to different characteristic exponents near
some singular point are called canonical solutions near that point. The series

F (α, β; γ; z) :=
∞∑

n=0

(α)n(β)n

(γ)n

zn

n!
, |z| < 1 (B.6)

where (a)n := a(a + 1) . . . (a + n − 1), (a)0 := 1, is the canonical solution
of (B.5), corresponding to the characteristic exponent ρ

(0)
1 = 0. The function

F (α, β; γ; z), defined by (B.6) for |z| < 1, can be analytically continued for
z ∈ C\(1,+∞) by different ways, for example using formulas (B.7)-(B.12)
below or integral representations [1, 50].

Evidently, it holds F (α, β; γ; z) = F (β, α; γ; z). If α = −m or β =
−m, m = 0, 1, 2, . . ., then F (α, β; γ; z) is a polynomial of degree m. Also,
the function F (α, β; γ; z) has a pole w.r.t γ at γ = −m, m ∈ N and

lim
γ→−m

F (α, β; γ; z)
Γ(γ)

=
(α)m+1(β)m+1

(m + 1)!
zm+1F (α + m + 1, β + m + 1;m + 2; z)

(see [1]), where Γ is the gamma-function, defined as the analytic continuation
for z ∈ C of the integral

Γ(z) =

∞∫

0

e−ttz−1dt, Re z > 0 .

The function Γ has no zeros and has poles of the first order at the points
z = −m, m = 0, 1, 2, . . .. Its logarithmic derivative ψΓ(z) := Γ′(z)/Γ(z) also
has poles of the first order at the same points.

Another canonical solution of (B.5), corresponding to the characteristic
exponent ρ

(0)
2 = 1 − γ for γ /∈ N, is

z1−γF (α − γ + 1, β − γ + 1; 2 − γ; z) .

Canonical solutions near the singular point z = 1 are
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F (α, β;α + β − γ + 1; 1 − z)

and if γ − α − β /∈ Z also

(1 − z)γ−α−βF (γ − α, γ − β; γ − α − β + 1; 1 − z) .

Near the singular point z = ∞ canonical solutions are

z−αF

(
α, α − γ + 1;α − β + 1;

1
z

)
, z−βF

(
β, β − γ + 1;β − α + 1;

1
z

)

if α − β /∈ Z. If α − β ∈ Z, then only one of these expressions is a canonical
solution: the first if α − β > 0 or the second if α − β < 0.

There are expansions of F (α, β; γ; z) through canonical solutions near the
singular points z = 1 and z = ∞ [1, 68], important for spectral problems. The
first one is

F (α, β; γ; z) =
Γ(γ)Γ(γ − α − β)
Γ(γ − α)Γ(γ − β)

F (α, β;α + β − γ + 1; 1 − z) (B.7)

+
Γ(γ)Γ(α + β − γ)

Γ(α)Γ(β)
(1 − z)γ−α−βF (γ − α, γ − β, γ − α − β + 1, 1 − z),

| arg(1 − z)| < π

if γ − α− β /∈ Z. For γ − α− β ∈ Z every summand at the right hand side of
(B.7) is singular and it holds for m = 0, 1, 2, . . .

F (α,β;α + β + m; z) =
Γ(m)Γ(α + β + m)
Γ(α + m)Γ(β + m)

m−1∑

n=0

(α)n(β)n

n!(1 − m)n
(1 − z)n

− Γ(α + β + m)
Γ(α)Γ(β)

(z − 1)m
∞∑

n=0

(α + m)n(β + m)n

n!(n + m)!
(1 − z)n (B.8)

× (ln(1 − z) − ψΓ(n + 1) − ψΓ(n + m + 1)
+ ψΓ(α + n + m) + ψΓ(β + n + m)),
F (α, β;α + β − m; z)

=
Γ(m)Γ(α + β − m)

Γ(α)Γ(β)
(1 − z)−m

m−1∑

n=0

(α − m)n(β − m)n

n!(1 − m)n
(1 − z)n

− (−1)mΓ(α + β − m)
Γ(α − m)Γ(β − m)

∞∑

n=0

(α)n(β)n

n!(n + m)!
(1 − z)n (B.9)

× (ln(1 − z) − ψΓ(n + 1) − ψΓ(n + m + 1) + ψΓ(α + n) + ψΓ(β + n)),
| arg(1 − z)| < π, |1 − z| < 1 .

In the case Re(γ − α − β) < 0, formulas (B.7) – (B.9) imply

lim
z→1

F (α, β; γ; z)(1 − z)α+β−γ =
Γ(γ)Γ(α + β − γ)

Γ(α)Γ(β)
. (B.10)
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The expansion of F (α, β, γ, z) through canonical solutions near the point z =
∞ is

F (α, β; γ; z) =
Γ(γ)Γ(β − α)
Γ(γ − α)Γ(β)

(−z)−αF

(
α, α − γ + 1;α − β + 1;

1
z

)

+
Γ(γ)Γ(α − β)
Γ(γ − β)Γ(α)

(−z)−βF

(
β, β − γ + 1;β − α + 1;

1
z

)
, | arg(−z)| < π,

(B.11)

if α − β /∈ Z. If α − β ∈ Z, then every summand at the right hand side of
(B.11) is singular. In this case:

F (α, α + m; γ; z) = F (α + m,α; γ; z) =
Γ(γ)(−z)−α

Γ(α + m)

m−1∑

n=0

Γ(m − n)(α)n

n!Γ(γ − α − n)
z−n

+
Γ(γ)(−z)−α−m

Γ(α + m)Γ(γ − m)

∞∑

n=0

(α)n+m(1 − γ + α)n+m

n!(n + m)!
z−n (B.12)

× (ln(−z) + ψΓ(n + m + 1) + ψΓ(n + 1) − ψΓ(α + n + m)
− ψΓ(γ − α − n − m)),
| arg(−z)| < π, |z| > 1, γ − α /∈ Z .

The corresponding formula for γ − α ∈ Z can be obtained by taking the
limit as γ − α → k ∈ Z in (B.12).

From (B.11) – (B.12) one sees that for Re α > Re β it holds

lim
z→−∞

F (α, β; γ; z)(−z)β =
Γ(γ)Γ(α − β)
Γ(α)Γ(γ − β)

. (B.13)

The Fuchsian equation (B.1) of the second order with four singular points
by transformations (B.3) and (B.4) can be reduced to the Heun equation

w′′(t) +
(

γ

t
+

δ

t − 1
+

ε

t − d

)
w′(t) +

αβt − q

t(t − 1)(t − d)
w(t) = 0, (B.14)

where 0, 1, d,∞ are its four singular points (d 
= 0, 1,∞) and α + β − γ − δ −
ε + 1 = 0. The corresponding P -symbol is

P






0 1 d ∞
0 0 0 α ; t

1 − γ 1 − δ 1 − ε β





.

Note that the accessory parameter q does not arise in this P -symbol.
The theory of the Heun equation is much less explicit than the theory of

the Riemannian equation. In particular, there are no explicit expressions of
canonical solutions near different singular points through each other. There-
fore, there are only approximate methods for solving spectral problems con-
nected with the Heun equation, using continued fractions (see for example
[176] and references therein).
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The substitution z = P (t) for a rational function P transforms (B.1) into
another Fuchsian equation with generally a greater number of singular points.
Therefore, sometimes the inverse transformation can decrease the number of
singular points of a Fuchsian equation.2

At the present time there is no a general theory of such reduction. However,
in [113] there were classified all Heun equations (B.14) that can be obtained
by a substitution z = P (t) from the hypergeometric equation (B.5). By the in-
verse transformation these Heun equations are reduced to the hypergeometric
equations.

The first condition for existing such reduction is the position of the point
d. Let

(z1, z2, z3, z4)c.r. :=
(z1 − z3)(z2 − z4)
(z1 − z4)(z2 − z3)

be the cross-ratio of four pairwise distinct points from C. It is well known
that a cross-ration is invariant under Möbius transformations. The group S4,
permuting points z1, z2, z3 and z4, acts on their cross-ration. The cross-ration
orbit OS4(s) of s := (z1, z2, z3, z4)c.r. consists of points s, 1 − s, 1/s, 1/(1 −
s), s/(s − 1), (s − 1)/s ∈ C.

In general position this orbit consists of six points, but there are two
exceptional cases: the orbit −1, 1

2 , 2 and the orbit 1
2±

√
3

2 i. If (z1, z2, z3, z4)c.r. ∈
(−1, 1

2 , 2), then (z1, z2, z3, z4) is a harmonic quadruple. If (z1, z2, z3, z4)c.r. =
1
2 ±

√
3

2 i, then (z1, z2, z3, z4) is an equianharmonic quadruple.
Points of a harmonic quadruple lie on a circle or on a line. By a Möbius tra-

nsformation they can be mapped into vertices of a square in C. If (z1, z2, z3,∞)
is a harmonic quadruple, then (z1, z2, z3) are collinear, equally spaced points.
If (z1, z2, z3,∞) is an equianharmonic quadruple, then (z1, z2, z3) are vertices
of an equilateral triangle in C.

Theorem B.1 ([113]). All cases, when nontrivial Heun equation (B.14) (i.e.,
αβ 
= 0 or q 
= 0) can be obtained from the hypergeometric one (B.5) by the
rational substitution z = P (t), are as follows.

1. Harmonic case: d ∈ OS4(2). Suppose d = 2,3 then q/(αβ) must be equal
1, and characteristic exponents of the points t = 0 and t = d = 2 must be
the same, i.e., γ = ε. The function P (t) is a degree-2 polynomial and can
be chosen as P (t) = t(2 − t) = 1 − (t − 1)2. It maps t = 0, 2 to z = 0 and
t = 1 to z = 1.4

If additionally 1 − δ = 2(1 − γ), then P (t) can be chosen also as degree-4
polynomial 4(t(2 − t) − 1

2 )2, which maps t = 0, 1, 2 to z = 1.
2. d ∈ OS4(4). Suppose d = 4, then q/(αβ) must be equal 1, characteristic

exponents of the point t = 1 must be double those of the point t = d = 4,
2 Generally, the inverse transformation does not conserve the Fuchs class of differ-

ential equations.
3 If d ∈ OS4(s), then the quadruple (0, 1, d,∞) can be mapped into the quadru-

ple (0, 1, s,∞) by a Möbius transformation, which transforms also parameters of
(B.14).

4 This transformation was found already in [96].
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i.e., 1− δ = 2(1− ε), and t = 0 must have characteristic exponents 0, 1/2,
i.e., γ = 1

2 . The function P (t) is a degree-3 polynomial and can be chosen
as (t − 1)2(1 − t

4 ). It maps t = 0 to z = 1 and t = 1, 4 to z = 0.
3. Equianharmonic case: d ∈ OS4(

1
2 +

√
3

2 i). Characteristic exponents of the
points t = 0, 1, d are the same, i.e., γ = δ = ε. Suppose d = 1

2 +
√

3
2 i, then

q/(αβ) must be equal 1
2 +

√
3

6 i. The function P (t) is a degree-3 polynomial

and can be chosen as
(
1 − t/( 1

2 +
√

3
6 i)

)3

. It maps t = 0, 1, d to z = 1 and
t = q/(αβ) to z = 0, thus creating a new singular point.
If additionally γ = δ = ε = 2

3 , then P (t) can be chosen also as degree-6
polynomial

4





(

1 − t
1
2 +

√
3

6 i

)3

− 1
2





2

,

which maps t = 0, 1, d, q/(αβ) to z = 1.
4. d ∈ OS4(

1
2 + 5

√
2

4 i). Suppose d = 1
2 + 5

√
2

4 i, then q/(αβ) must be equal
1
2 +

√
2

4 i, characteristic exponents of the point t = d must be 0, 1/3, i.e.,
ε = 2/3, and points t = 0, 1 must have characteristic exponents 0, 1/2,
i.e., γ = δ = 1/2. The function P (t) is a degree-4 polynomial and can be
chosen as (

1 − t
1
2 + 5

√
2

4 i

)(

1 − t
1
2 +

√
2

4 i

)3

.

It maps t = 0, 1 to z = 1 and t = d, q/(αβ) to z = 0.
5. d ∈ OS4(

1
2 + 11

√
15

90 i). Suppose d = 1
2 + 11

√
15

90 i, then q/(αβ) must be equal
1
2 +

√
15

18 i, characteristic exponents of the point t = d must be 0, 1/2, i.e.,
ε = 1/2, and the points t = 0, 1 must have characteristic exponents 0, 1/3,
i.e., γ = δ = 2/3. The function P (t) is a degree-5 polynomial and can be
chosen as

−i
2025

√
15

64
t(t − 1)

(

t − 1
2
−

√
15

18
i

)3

.

It maps t = 0, 1, q/(αβ) to z = 0 and t = d to z = 1.

Note that there are three independent parameters in the first case of The-
orem B.1 (for example: α, β, γ) and all other cases contain only one or two
free parameters. This means that the first case is more rife in applications. In
fact, it is the only one, which occurs in the present book.



C

Orthogonal Complex Lie Algebras
and Their Representations

C.1 Lie Algebra Bk

Here is a brief description of the simple complex Lie algebra Bk
∼= so(2k + 1, C)

(see [53, 60] and [135] for details).
Denote

Si =








0 0 . . . 0 0 1
0 0 . . . 0 1 0
...

...
. . .

...
...

1 0 . . . 0 0 0








∈ GL(i), i ∈ N .

Consider the Lie algebra Bk
∼= so(2k + 1, C) as

Bk =
(
A ∈ gl(2k + 1, C)| AT S2k+1 + S2k+1A = 0

)
. (C.1)

Following [125], we shall enumerate the rows and columns of A ∈ Bk by the
indices −k, . . . ,−1, 0, 1, . . . , k. The convenience of such notations is due to
the fact that subalgebras Bi ⊂ Bk, i < k, correspond to indices of rows and
columns from −i to i.

It can be easily shown that a matrix

A =
∑

i,j

aijEij ∈ gl(2k + 1, C)

belongs to Bk iff it holds aij + a−j,−i = 0. This means that A is skew-
symmetric w.r.t. its secondary diagonal.

Let Fij = Eij − E−j,−i, then it is easily seen that

[Fij , Fpq] = δjpFiq − δiqFpj + δ−piF−qj + δ−jqFp,−i .

The algebra Bk is spanned by elements Fij with i > −j. Evidently, Fi,−i = 0
and F−j,−i = −Fij .

Elements Fii, i = 1, . . . , k form a base of the Cartan subalgebra hk ⊂ Bk,
which consists of elements of the form
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X = diag (−xk,−xk−1, . . . ,−x1, 0, x1, . . . , xk−1, xk) .

Let εi ∈ h∗
k such that εi(X) = xi, i.e., εi is a base in h∗

k dual to Fii, i = 1, . . . , k.
Define a symmetric nondegenerate bilinear form 〈·, ·〉 on Bk as

〈A,B〉 =
1
2

tr AB , (C.2)

which is proportional to the Killing form. Clearly,

〈Fij , Fqp〉 = δipδjq, i > −j, q > −p .

In particular, Fii, i = 1, . . . , k, is an orthogonal base in hk.
The form 〈·, ·〉|

hk
generates the isomorphism κ : hk → h∗

k by the formula
κ(X) = 〈X, ·〉. Specifically, κ(Fi,i) = εi and εi, i = 1, . . . , k is an orthonormal
base in h∗

k w.r.t. the form

〈f1, f2〉∗ := 〈κ−1(f1), κ−1(f2)〉, f1, f2 ∈ h∗
k .

Using this notation one can describe the standard form of the root system
for Bk in the following way. Let

ΦBk
:= (±εi,±εi ± εj | i 
= j, i, j = 1, . . . , k)

be a root system in Bk ,

Φ+
Bk

:= (εi, εi + εj , εi − εj | i > j, i, j = 1, . . . , k)

be a system of positive roots and

∆Bk
:= (α1 = ε1, αi = εi − εi−1| i = 2, . . . , k)

be a system of simple roots, corresponding to the inverse lexicographic order.
A subalgebra Bi ⊂ Bk, i < k, corresponds to root systems ΦBi

, Φ+
Bi

and
∆Bi

.
Let Lα be a root subspace in Bk, corresponding to a root α ∈ ΦBk

. Then
it holds

L−εi
= span(F0i), Lεi

= span(Fi0), Lεi−εj
= span(Fij),

Lεi+εj
= span(Fi,−j), L−εi−εj

= span(F−ij), i, j = 1, . . . , k .
(C.3)

Fundamental weights for Bk are

λ1 =
1
2

k∑

j=1

εj , λi =
k∑

j=i

εj , i = 2, . . . , k .

Let

λ =
k∑

j=1

λjλj , λj ∈ Z+ := (0) ∪ N
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be a dominant weight and V (λ) be an irreducible finite-dimensional Bk-
module with the highest weight λ. All finite-dimensional irreducible repre-
sentations of Bk are of this form, modules V (λ) with different λ are not
isomorphic to each other and V (λ) corresponds to a (single-valued) represen-
tation of the group SO(2k + 1) iff λ1 is even. The dominant weight λ can be
written in the form

λ =
k∑

i=1

miεi, mk � mk−1 � . . . � m1 � 0 , (C.4)

where either all mi ∈ Z+ or all mi ∈ Z+ + 1
2 . Even values of λ1 corresponds

to mi ∈ Z+. Let δ be the sum of fundamental weights. Then it holds

δ =
k∑

i=1

λi =
1
2

k∑

α∈Φ+
Bk

α =
k∑

i=1

(
i − 1

2

)
εi . (C.5)

The universal Casimir operator C ∈ U(Bk) is

C =
k∑

i=1

(
F 2

ii + {Fi0, F0i}
)

+
∑

i>j>0

({Fij , Fji} + {Fi,−j , F−ji}) . (C.6)

The following formulas are valid for any semisimple Lie algebra:

C|V (λ) = (〈δ + λ, δ + λ〉 − 〈δ, δ〉) id, (C.7)

dim V (λ) =
∏

α�0

〈λ + δ, α〉
/

∏

α�0

〈δ, α〉, (C.8)

where α � 0 means a positive root.
For any semisimple Lie algebra g and its Cartan subalgebra h, the module

V (λ) can be decomposed into the finite direct sum of weight subspaces

V (λ) =
⊕

µ

Vµ(λ), µ ∈ h∗ ,

where for ∀v ∈ Vµ(λ),∀h ∈ h, it holds h(v) = µ(h)v and the sum is over
weights of the form

λ −
∑

α�0

iαα, iα ∈ Z+ .

Besides, for any root α of g one has

ξα : Vµ(λ) → Vµ+α(λ)), ξα ∈ Lα . (C.9)

C.2 Lie Algebra Dk

The Lie algebra Dk is the subalgebra of Bk, consisting of matrices whose
column and rows with the index 0 vanish. We shall discard these null row and
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column and shall enumerate other rows and columns of A ∈ Dk by the indices
−k, . . . ,−1, 1, . . . , k as before. The Cartan subalgebra hk ⊂ Dk is the same
as in the Bk-case. Describe the Dk-case briefly, emphasizing differences from
the Bk-case.

Now one has

ΦDk
:= (±εi ± εj | i 
= j, i, j = 1, . . . , k) ,

Φ+
Dk

:= (εi + εj , εi − εj | i > j, i, j = 1, . . . , k) ,

∆Dk
:= (α1 = ε1 + ε2, αi = εi − εi−1| i = 2, . . . , k) .

The root subspaces L±εi±εj
are the same as in Bk-case.

Fundamental weights are

λ1 =
1
2

k∑

j=1

εj , λ2 = −1
2
ε1 +

1
2

k∑

j=2

εj , λi =
k∑

j=i

εj , i = 3, . . . , k .

The sum of fundamental weights is

δ =
k∑

i=1

λi =
1
2

k∑

α∈Φ+
Dk

α =
k∑

i=2

(i − 1)εi .

A dominant weight

λ =
k∑

j=1

λjλj , λj ∈ Z+ := (0) ∪ N

now has the form

λ =
k∑

i=1

miεi, mk � mk−1 � . . . � m2 � |m1|, (C.10)

where either m1 ∈ Z,mi ∈ Z+, i � 2 or m1 ∈ Z + 1
2 ,mi ∈ Z+ + 1

2 , i � 2.
Again Dk-modules with integer mj , j = 1, . . . , k correspond to (single-valued)
representations of the group SO(2k).

The universal Casimir operator C ∈ U(Dk) is

C =
k∑

i=1

F 2
ii +

∑

i>j>0

({Fij , Fji} + {Fi,−j , F−ji}) . (C.11)

C.3 Restrictions of Bk and Dk-Representations

The following results were found in [211] (see also [212]).
Let VBk

(λ) be a simple Bk-module with a highest weight (C.4) and VDk
(λ)

be a simple Dk-module with a highest weight

λ′ =
k∑

i=1

m′
iεi, m′

k � m′
k−1 � . . . � m′

2 � |m′
1| .
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Proposition C.1. The restriction VBk
(λ)|

Dk
of the irreducible Bk-represent-

ation onto any subalgebra Dk ⊂ Bk expands as follows

VBk
(λ)|

Dk
=
⊕

λ′

VDk
(λ′) ,

where the summation is over all λ′ such that

mk � m′
k � mk−1 � . . . � m′

2 � m1 � m′
1 � −m1

and all m′
j are integer or half integer simultaneously with mj.

Let VBk−1(λ
′) be a simple Bk−1-module with a highest weight

λ′ =
k−1∑

i=1

m′
iεi, m′

k−1 � m′
k−2 � . . . � m′

2 � m′
1 � 0 .

Proposition C.2. The restriction VDk
(λ)|

Bk−1
of the irreducible Dk-represe-

ntation onto any subalgebra Bk−1 ⊂ Dk expands as follows

VDk
(λ)|

Bk−1
=
⊕

λ′

VBk−1(λ
′) ,

where the summation is over all λ′ such that

mk � m′
k−1 � mk−1 � . . . � m2 � m′

1 � |m1|

and all m′
j are integer or half integer simultaneously with mj.

C.4 The Proof of Two Expansions

Expansions (8.14), (8.20) were obtained in [125] and [124] using the theory of
Yangians, which is a part of the quantum algebra. Here we give an independent
proof of these expansions from a classical point of view using one result from
[41]. The initial idea of this proof is due to A.I. Molev.

Let A be an associative algebra over C, generated by elements Z+, Z−, F
and relations

[F,Z+] = 2Z+, [F,Z−] = −2Z−, [Z+, Z−] = −1
2
F 3 + qF, q ∈ C. (C.12)

Let also τ : A → HomC(V ) be its irreducible linear representation in a finite-
dimensional complex linear space V . An arbitrary linear operator in V has
at least one eigenvalue. Let Fχ = ηχ, η ∈ C, χ ∈ V, χ 
= 0, then relations
(C.12) imply FZ+χ = (η + 2)Z+χ, FZ−χ = (η − 2)Z−χ. Since dimC V < ∞,
there is a vector vν ∈ V, vν 
= 0 such that Fvν = νvν , Z+vν = 0, ν ∈ C. Let
vν−2j := Zj

−vν , j ∈ Z+, then

Fvη = ηvη, Z−vη = vη−2, ∀η ∈ Lν := ν − 2Z+ . (C.13)

Let µ be a root of the equation

µ2 + 2µ + ν2 + 2ν − 4q = 0 . (C.14)
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Lemma C.1. It holds

Z+vη =
1
16

(η − µ)(η − ν)(η + µ + 2)(η + ν + 2)vη+2, η ∈ Lν . (C.15)

Proof. For η = ν equality (C.15) is obvious. Let α ∈ Lν , α � ν and suppose
that (C.15) is valid for any η ∈ Lν such that η > α. Then one gets

Z+vα = Z+Z−vα+2 = [Z+, Z−]vα+2 + Z−Z+vα+2 =
(
−1

2
F 3 + qF

)
vα+2

+
1
16

(α + 2 − µ)(α + 2 − ν)(α + µ + 4)(α + ν + 4)Z−vα+4

=
(
−1

2
(α + 2)3 + q(α + 2)

+
1
16

(α + 2 − µ)(α + 2 − ν)(α + µ + 4)(α + ν + 4)
)

vα+2

=
1
16

(α − µ)(α − ν)(α + µ + 2)(α + ν + 2)vα+2,

due to (C.12), (C.13), (C.15), and the following identity

(α + 2 − µ)(α + 2 − ν)(α + µ + 4)(α + ν + 4)

−(α − µ)(α − ν)(α + µ + 2)(α + ν + 2) = 8(α + 2)3 − 16q(α + 2) .

This completes the induction. ��

Due to (C.13) nonzero vectors vη, η ∈ Lν are linearly independent, there-
fore the inequality dimC V < ∞ yields vν1 
= 0, vν1−2 = 0 for some ν1 ∈ Lν .
Since the representation τ is irreducible, one gets

V = span (vν1 , vν1+2, . . . , vν) , dimC V =
1
2
(ν − ν1) + 1 (C.16)

due to (C.13) and (C.15). Equation (C.15) for η = ν1 − 2 implies

(ν1 − 2 − µ)(ν1 + µ)(ν1 + ν) = 0 . (C.17)

Let now Z+ = D+, Z− = D−, F = Fkk, k � 2 for the operators
D+,D−, Fkk from Sect. 8.2.1, V := ṼBk

(mkεk + mk−1εk−1) and therefore

q =
1
2
(
m2

k + m2
k−1 + (2k − 1)mk + (2k − 3)mk−1

)
+

1
4
(2k − 1)(2k − 3) .

(C.18)
Let A′ := (U(so(2k + 1, C)))so(2k−1,C) be the centralizer in

U(so(2k + 1, C)) of a Lie subalgebra so(2k − 1, C) ⊂ so(2k + 1, C). Obvi-
ously, the algebra A′ acts in V . From Theorem 9.1.12 in [41] it follows that
this action is irreducible. The definition of operators D+,D−, Fkk, k � 2 in
Sect. 8.2.1 and Theorem 2.3 imply that algebras A′ and A coincide modulo
operators acting as scalars in the space V . Thus, the A-module V is irreducible
and Lemma C.1 is applicable.
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We shall demonstrate that

(ν1 − 2 − µ)(ν1 + µ) 
= 0 . (C.19)

Indeed the A-module ṼBk
(mkεk + mk−1εk−1) does not contain weight sub-

spaces corresponding to weights jεk for |j| > mk [60], therefore

(ν1 − 1)2 + (ν + 1)2 � 2(mk + 1)2 . (C.20)

If (ν1 − 2 − µ)(ν1 + µ) = 0 then |ν1 − 1| = |µ + 1| and (C.14) leads to the
inequality

2 + 4q = (µ + 1)2 + (ν + 1)2 � 2(mk + 1)2 ,

which is equivalent to

m2
k−1 + (2k − 3)(mk + mk−1) +

1
2
(2k − 1)(2k − 3) � 0 (C.21)

due to (C.18). Obviously inequality (C.21) is impossible.
Thus, from (C.16), (C.17), (C.19) and (8.8) one gets ν = −ν1 = mk−mk−1.

Now expansion (8.14) follows from (C.13) and (C.16).
The consideration for the space V := ṼDk

(mkεk + mk−1εk−1), k � 2 and
the operators Z+ = D+, Z− = D−, F = Fkk, k � 2 from Sect. 8.2.2 is similar.
The A-module V is irreducible due to the same reasons as above. Here one
has

q =
1
2
(
m2

k + m2
k−1 + 2(k − 1)mk + 2(k − 2)mk−1

)
+ (k − 1)(k − 2)

and the conjecture (ν1 − 2 − µ)(ν1 + µ) = 0 now implies by (C.20)

2(k − 2)mk + (mk−1 + k − 2)2 + k(k − 2) � 0

that leads to k = 2, mk−1 = 0 and to the equality in (C.20). This yields

ν = −ν1 = mk − |mk−1| . (C.22)

The last possibility ν1 = −ν in (C.17) also leads to (C.22) due to (8.18) and
(C.16). Now expansion (8.20) is a consequence of (C.13), (C.16) and (C.22).
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Unsolved Problems

1. Find nonconstant central potentials (or prove their absence), for which
the quantum or classical two-body problem on a two-point homogeneous
Riemannian space is integrable in some sense.

2. Prove the completeness of the generator system D0, · · · ,D9 for the algebra

DiffI

(
P2(Ca)S

)
.

3. Classify reduced phase spaces for the two-body problem on spaces

Pn(C),Pn(H),P2(Ca),Hn(C),Hn(H),H2(Ca), n = 2, 3 .

4. The discrete spectrum of the two-body problem in Euclidean space is
obtained after the center of mass separation. It is interesting to find an
alternative procedure, valid also for noncompact two-point homogeneous
spaces (see Sect. 8.4). It is not contradict to conjecture 8.1, since the center
of mass separation changes a Hamiltonian.
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41. Dixmier J. Algèbres enveloppantes. Paris: Bordas (Gauthier-Villars) (1974).
42. Dombrowski P., Zitterbarth J. On the planetary motion in the three dimen-

sional standart spaces M3
κ of constant curvature κ ∈ R, Demonstratio Mathe-

matica, 24, 375–458 (1991).
43. Donnelly H., Garofalo N. Schrödinger operators on manifolds, essential self-

adjointness, and absence of eigenvalues, Journal of Geom. Anal., 7, 241–257
(1997).

44. Faris W. Self-adjoint operators, Lecture Notes in Math., V. 433, Springer, New
York (1975).

45. Freudenthal H. Oktaven, Ausnahmegruppen und Oktavengeometrie, Mathe-
matisch Instituut der Rijksuniversiteit te Utrecht, mimeographed notes, 1951.
Available also: Geom. Dedicata, 19, 7–63 (1985).

46. Fuchs L. Zur Theorie der linearen Differentialgleichungen mit veränderlichen
Coefficienten, J. Reine Angew. Math., Bd. 66, S. 121–160 (1866); Bd. 68,
S. 354–385 (1868).

47. Galperin G. A. On the notion of centroid of material points system in spaces
of constant curvature, Rep. Soviet Academy of Sci., 302, 1039–1044 (1988).

48. Galperin G.A. A concept of the mass center of a system of material points in
the constant curvature spaces, Comm. Math. Phys., 154, 63–84 (1993).

49. Gelbart S.S. A theory of Stiefel harmonics, Trans. of AMS, 192, 29–50 (1974).
50. Golubew W. Vorlesungen über Differentialgleichungen. Deutsch Verl. Wiss.

Berlin. (1958).
51. Gordon W.B. On the relation between period and energy in periodic dynamical

systems, J. Math. and Mech., 19, 111–114 (1969).
52. Gotay M.J. Constraints, reduction, and quantization J. Math. Phys., 27

(8), 2051–2066 (1986).
53. Goto M., Grosshans F.D. Semisimple Lie algebras, Marcel Dekker, New York

(1978).
54. Granovskii Ya.I., Zhedanov A.S., Lutsenko I.M. Quadric algebras and dynamics

in curved space. I. An oscillator, Theor. Math. Phys., 91, 474–480 (1992). II.
The Kepler problem, pp. 604–612.

55. Gray A. Tubes. Addison-Wesley Publishing (1990).
56. Gromoll D., Klingenberg W., Meyer W. Riemannsche Geometrie im Grossen.

Springer-Verlag, Berlin (1988).
57. Guillemin V., Sternberg S. Geometric asymptotics. AMS. Providence. (1977).
58. Guillemin V., Sternberg S. Symplectic techniques in physics. Cambridge. Cam-

bridge Univ. Press (1984).
59. Gutzwiller M.C. Chaos in classical and quantum mechanics. Springer, New

York (1992).
60. Hamphreys J.E. Introduction to Lie Algebras and Representation Theory,

Springer-Verlag, New York (1994).
61. Heath R.S. On the dynamics of a rigid body in elliptic space, Phil. Transactions

of the Royal Soc. of London, 175, 281–324 (1884).
62. Helgason S. Differential operators on homogeneous spaces, Acta Math.,

109, 239–299 (1959).
63. Helgason S. Differential geometry and symmetric spaces. Acad. Press. N.Y.

(1962).



246 References

64. Helgason S. The surjectivity of invariant differential operators on symmmetric
spaces, Ann. of Math. 98, 451–480 (1973).

65. Helgason S. Differential geometry, Lie groups, and symmetric spaces. Acad.
Press, N.Y. (1978).

66. Helgason S., Groups and Geometric Analysis, Acad. Press, Orlando, Fla.
(1984).

67. Helgason S. Geometric analysis on symmetric spaces, AMS, Providence (1994).
68. Higher Transcendent Functions, 1–3, McGraw Hill book company, 1953–1955.
69. Higgs P.W. Dynamical symmetries in a spherical geometry I, J. Phys. A.

Math. Gen., 12, 309–323 (1979).
70. Ikeda M., Nishino Y. On classical dynamical systems admitting the maximum

number of linearly independent first integrals, Math. Japon., 17, 69–78 (1972).
71. Ikeda M., Katayama N. On generalization of Bertrand’s theorem to spaces of

constant curvature, Tensor, 38, 37–40 (1982).
72. Infeld L. On the new treatment of some eigenvalue problems, Phys. Rev.,

59, 737–747 (1941).
73. Infeld L., Schild A. A note on the Kepler problem in a space of constant

negative curvature, Phys. Rev. 67, 121–122 (1945).
74. Infeld L., Hull T.E. The factorization method, Reviews of modern Physics.

23, 21–68 (1951).
75. Iwai T., Hirose T. The reduction of quantum systems of three identical particles

on a plane, J. Math. Phys., 43, 2907–2926 (2002).
76. Iwai T., Hirose T. Reduction of quantum systems with symmetry, continuous

and discrete, J. Math. Phys., 43, 2927–2947 (2002).
77. Kagan V.F. Foundations of Geometry [in Russian]. V. II, GITTL, Moscow

(1956).
78. Kalnins E.G., Miller W., Pogosyan G.S. Superintegrability and associated

polynimial solutions. Euclidean space and the sphere in two dimensions,
J. Math. Phys., 37, 6439–6467 (1996).

79. Kalnins E.G., Miller W., Pogosyan G.S. Superintegrability in the two-
dimensional hyperboloid, J. Math. Phys., 38, 5416–5433 (1997).

80. Kalnins E.G., Miller W., Hakobyan Ye.M., Pogosyan G.S. Superintegrability
in the two-dimensional hyperboloid II, J. Math. Phys., 40, 2291–2306 (1999).

81. Katayama N.A note on the Kepler problem in a space of constant curvature,
Nuovo Cimento, 105 B, 113–119 (1990); Corrigendum: p. 707.

82. Katayama N.A note on a quantum-mechanical harmonic oscillator in a space
of constant curvature, Nuovo Cimento, 107 B, 763–768 (1992).

83. Katayama N. On generalized Runge-Lenz vector and conserved symmetric ten-
sor for central-potential systems with a monopole field on spaces of constant
curvature, Nuovo Cimento, 108 B, 657–667 (1993).

84. Katayama N., Matsushita Y. A problem on closed orbits in a cosmological
model, Tensor, 42, 173–178 (1985).

85. Kato T. Perturbation theory for linear operators, Springer-Verlag, New York
(1980).

86. Kilin A.A. Libration points in spaces S2 and L2, Regular and chaotic dynamics,
4, 91–104 (1990).

87. Killing W. Die Mechanik in den nicht-Euklidischen Raumformen, J. Reine
Angew. Math., Bd. 98 (1885), S. 1–48.

88. Kirillov A.A. Elements of the theory of Representations, Springer-Verlag,
Berlin (1975).

89. Kirillov A.A. Invariant operators over geometric quantities [in Russian], in
“Current problems in mathematics”, 16, 3–29, Akad. Nauk SSSR, Vsesoyuz.
Inst. Nauch. i Techn. Informatsii, Moscow (1980).



References 247

90. Klein F. Vorlesungen über nicht-euklidische Geometrie, Springer Verlag, Berlin
(1968).

91. Klingenberg W. Lectures on closed geodesics, Springer Verlag, New York
(1978).

92. Kobayashi S., Nomizu K., Foundations of differential geometry, 1, 2. Inter-
science publishers, New York (1963), (1969).

93. Kozlov V.V. Dynamics in spaces of constant curvature, Moscow Univ. Math.
Bull., 49, (2), 21–28 (1994).

94. Kozlov V.V., Fedorov Yu.N. Integrable system on a sphere with potential of
elastic interaction [in Russian], Mat. Zametki, 56 (3), 74–79 (1994).

95. Kozlov V.V., Harin A.O. Keplers problem in constant curvature spaces, Ce-
lest. Mech. and Dynam. Astron. 54, 393–399 (1992).

96. Kuiken K. Heun’s equation and the hyperbolic equation, SIAM J. Math. Anal.,
10, 655–657 (1979).

97. Kummer M. On the construction of the reduced phase space of a Hamiltonian
system with symmetry, Indiana Univ. Math. J., 30, 281–291 (1973).

98. Kurochkin Yu.A., Otchik V.S. The analog for the Runge-Lenz vector and the
energy spectrum for the Kepler problem on the three-dimensional sphere [in
Russian], Dokl. Akad. Nauk BSSR, 23, 987–990 (1979).

99. Landau L.D., Lifshitz E.M. Quantum mechanics. Nonrelativistic theory, Ox-
ford Univ. Press, Oxford (1975).

100. Landsman N.P. Rieffel induction as generalized quantum Marsden-Weinstein
reduction, J. Geom. Phys., 15, 285–319 (1995).

101. Leemon H.I. Dynamical symmetries in a spherical geometry II,
J. Phys. A. Math. Gen., 12, 489–501 (1979).

102. Levin D.A. Systems of singular integral operators on spheres, Trans. of AMS,
144, 493–522 (1969).

103. Liebmann H. Die Kegelschnitte und die Planetenbewegung im nichteuklidis-
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mannschen Raümen, Nachr. Königl. Ges. Wiss. Göttingen, S. 149–159 (1873).

156. Schrödinger E. A method of determining quantum-mechanical eigenvalues and
eigenfunctions, Proc. Royal Irish Acad. Sect. A, 46, 9–16 (1940).
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